#! /usr/bin/env python # def wilk21 ( n ): #*****************************************************************************80 # ## WILK21 returns the WILK21 matrix. # # Discussion: # # By using values of N not equal to 21, WILK21 can return a variety # of related matrices. # # Formula: # # if ( I = J ) # A(I,J) = nint ( abs ( i - ( n+1 ) / 2 ) ) # elseif ( I = J - 1 or I = J + 1 ) # A(I,J) = 1 # else # A(I,J) = 0 # # Example: # # N = 21 # # 10 1 . . . . . . . . . . . . . . . . . . . # 1 9 1 . . . . . . . . . . . . . . . . . . # . 1 8 1 . . . . . . . . . . . . . . . . . # . . 1 7 1 . . . . . . . . . . . . . . . . # . . . 1 6 1 . . . . . . . . . . . . . . . # . . . . 1 5 1 . . . . . . . . . . . . . . # . . . . . 1 4 1 . . . . . . . . . . . . . # . . . . . . 1 3 1 . . . . . . . . . . . . # . . . . . . . 1 2 1 . . . . . . . . . . . # . . . . . . . . 1 1 1 . . . . . . . . . . # . . . . . . . . . 1 0 1 . . . . . . . . . # . . . . . . . . . . 1 1 1 . . . . . . . . # . . . . . . . . . . . 1 2 1 . . . . . . . # . . . . . . . . . . . . 1 3 1 . . . . . . # . . . . . . . . . . . . . 1 4 1 . . . . . # . . . . . . . . . . . . . . 1 5 1 . . . . # . . . . . . . . . . . . . . . 1 6 1 . . . # . . . . . . . . . . . . . . . . 1 7 1 . . # . . . . . . . . . . . . . . . . . 1 8 1 . # . . . . . . . . . . . . . . . . . . 1 9 1 # . . . . . . . . . . . . . . . . . . . 1 10 # # Properties: # # A is tridiagonal. # # Because A is tridiagonal, it has property A (bipartite). # # A is integral, therefore det ( A ) is integral, and # det ( A ) * inverse ( A ) is integral. # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 February 2015 # # Author: # # John Burkardt # # Reference: # # James Wilkinson, # The Algebraic Eigenvalue Problem, # Oxford University Press, 1965, # page 308. # # Parameters: # # Input, integer N, the order of the desired matrix. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i == j ): a[i,j] = float ( abs ( i + 1 - ( n + 1 ) // 2 ) ) elif ( j == i + 1 ): a[i,j] = 1.0 elif ( j == i - 1 ): a[i,j] = 1.0 return a def wilk21_determinant ( n ): #*****************************************************************************80 # ## WILK21_DETERMINANT computes the determinant of the WILK21 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # import numpy as np d = np.zeros ( n ) for i in range ( 0, n ): d[i] = abs ( float ( i + 1 - ( n + 1 ) // 2 ) ) determ_nm1 = d[n-1] if ( n == 1 ): value = determ_nm1; return value determ_nm2 = determ_nm1 determ_nm1 = d[n-2] * d[n-1] - 1.0 if ( n == 2 ): value = determ_nm1 return value for i in range ( n - 3, -1, -1 ): value = d[i] * determ_nm1 - determ_nm2 determ_nm2 = determ_nm1 determ_nm1 = value return value def wilk21_determinant_test ( ): #*****************************************************************************80 # ## WILK21_DETERMINANT_TEST tests WILK21_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 February 2015 # # Author: # # John Burkardt # from wilk21 import wilk21 from r8mat_print import r8mat_print print '' print 'WILK21_DETERMINANT_TEST' print ' WILK21_DETERMINANT computes the WILK21 determinant.' m = 5 n = m a = wilk21 ( n ) r8mat_print ( m, n, a, ' WILK21 matrix:' ) value = wilk21_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'WILK21_DETERMINANT_TEST' print ' Normal end of execution.' return def wilk21_inverse ( n ): #*****************************************************************************80 # ## WILK21_INVERSE returns the inverse of the WILK21 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 March 2015 # # Author: # # John Burkardt # # Reference: # # CM daFonseca, J Petronilho, # Explicit Inverses of Some Tridiagonal Matrices, # Linear Algebra and Its Applications, # Volume 325, 2001, pages 7-21. # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real A(N,N), the inverse of the matrix. # import numpy as np from r8_mop import r8_mop y = np.zeros ( n ) for i in range ( 0, n ): y[i] = float ( abs ( i + 1 - ( n + 1 ) // 2 ) ) d = np.zeros ( n ) d[n-1] = y[n-1] for i in range ( n - 2, -1, -1 ): d[i] = y[i] - 1.0 / d[i+1] e = np.zeros ( n ) e[0] = y[0] for i in range ( 1, n ): e[i] = y[i] - 1.0 / e[i-1] a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, i + 1 ): p1 = 1.0 for k in range ( i + 1, n ): p1 = p1 * d[k] p2 = 1.0 for k in range ( j, n ): p2 = p2 * e[k] a[i,j] = r8_mop ( i + j ) * p1 / p2 for j in range ( i + 1, n ): p1 = 1.0 for k in range ( j + 1, n ): p1 = p1 * d[k] p2 = 1.0 for k in range ( i, n ): p2 = p2 * e[k] a[i,j] = r8_mop ( i + j ) * p1 / p2 return a def wilk21_test ( ): #*****************************************************************************80 # ## WILK21_TEST tests WILK21. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'WILK21_TEST' print ' WILK21 computes the WILK21 matrix.' m = 5 n = m a = wilk21 ( n ) r8mat_print ( m, n, a, ' WILK21 matrix:' ) print '' print 'WILK21_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) wilk21_test ( ) timestamp ( )