#! /usr/bin/env python # def wilson ( ): #*****************************************************************************80 # ## WILSON returns the Wilson matrix. # # Formula: # # A = # 5 7 6 5 # 7 10 8 7 # 6 8 10 9 # 5 7 9 10 # # Properties: # # The Higham/MATLAB version of this matrix has rows and columns # 1 and 2 interchanged. # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is positive definite. # # det ( A ) = 1. # # A is ill-conditioned. # # A * X = B, where X is the Wilson solution vector, and B is the # Wilson right hand side. # # A is integral, therefore det ( A ) is integral, and # det ( A ) * inverse ( A ) is integral. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 December 2014 # # Author: # # John Burkardt # # Reference: # # Joan Westlake, # A Handbook of Numerical Matrix Inversion and Solution of # Linear Equations, # John Wiley, 1968, # ISBN13: 978-0471936756, # LC: QA263.W47. # # Parameters: # # Output, real A(4,4), the matrix. # import numpy as np a = np.array ( [ \ [ 5.0, 7.0, 6.0, 5.0 ], \ [ 7.0, 10.0, 8.0, 7.0 ], \ [ 6.0, 8.0, 10.0, 9.0 ], \ [ 5.0, 7.0, 9.0, 10.0 ] ] ) return a def wilson_condition ( ): #*****************************************************************************80 # ## WILSON_CONDITION returns the L1 condition of the WILSON matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real COND, the L1 condition number. # cond = 4488.0 return cond def wilson_condition_test ( ): #*****************************************************************************80 # ## WILSON_CONDITION_TEST tests WILSON_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 December 2014 # # Author: # # John Burkardt # from wilson import wilson from r8mat_print import r8mat_print print '' print 'WILSON_CONDITION_TEST' print ' WILSON_CONDITION computes the condition of the WILSON matrix.' print '' n = 4 a = wilson ( ) r8mat_print ( n, n, a, ' WILSON matrix:' ) value = wilson_condition ( ) print '' print ' Value = %g' % ( value ) print '' print 'WILSON_CONDITION_TEST' print ' Normal end of execution.' return def wilson_determinant ( ): #*****************************************************************************80 # ## WILSON_DETERMINANT returns the determinant of the WILSON matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # value = 1.0 return value def wilson_determinant_test ( ): #*****************************************************************************80 # ## WILSON_DETERMINANT_TEST tests WILSON_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 February 2015 # # Author: # # John Burkardt # from wilson import wilson from r8mat_print import r8mat_print print '' print 'WILSON_DETERMINANT_TEST' print ' WILSON_DETERMINANT computes the determinant of the WILSON matrix.' print '' n = 4 a = wilson ( ) r8mat_print ( n, n, a, ' WILSON matrix:' ) value = wilson_determinant ( ) print '' print ' Value = %g' % ( value ) print '' print 'WILSON_DETERMINANT_TEST' print ' Normal end of execution.' return def wilson_eigen_right ( ): #*****************************************************************************80 # ## WILSON_EIGEN_RIGHT returns the right eigenvectors of the WILSON matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real A(4,4), the right eigenvector matrix. # import numpy as np # # Note that the matrix entries are listed by row. # a = np.array ( [ \ [ 0.380262074390714, \ 0.396305561186082, \ 0.093305039089285, \ 0.830443752841578 ], \ [ 0.528567849528642, \ 0.614861280394151, \ -0.301652326903523, \ -0.501565058582058 ], \ [ 0.551954849631663, \ -0.271601039711768, \ 0.760318430013036, \ -0.208553600252039 ], \ [ 0.520924780743657, \ -0.625396181050490, \ -0.567640668325261, \ 0.123697458332363 ] ] ) return a def wilson_eigenvalues ( ): #*****************************************************************************80 # ## WILSON_EIGENVALUES returns the eigenvalues of the WILSON matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real LAM(4), the eigenvalues.. # import numpy as np lam = np.array ( [ \ [ 30.288685345802129 ], \ [ 3.858057455944950 ], \ [ 0.843107149855033 ], \ [ 0.010150048397892 ] ] ) return lam def wilson_inverse ( ): #*****************************************************************************80 # ## WILSON_INVERSE returns the inverse of the Wilson matrix. # # Formula: # # 68 -41 -17 10 # -41 25 10 -6 # -17 10 5 -3 # 10 -6 -3 2 # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is integral, therefore det ( A ) is integral, and # det ( A ) * inverse ( A ) is integral. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 March 2015 # # Author: # # John Burkardt # # Reference: # # Joan Westlake, # A Handbook of Numerical Matrix Inversion and Solution of # Linear Equations, # John Wiley, 1968, # ISBN13: 978-0471936756, # LC: QA263.W47. # # Parameters: # # Output, real A(4,4), the matrix. # import numpy as np # # Note that the matrix entries are listed by row. # a = np.array ( [ \ [ 68.0, -41.0, -17.0, 10.0 ], \ [ -41.0, 25.0, 10.0, -6.0 ], \ [ -17.0, 10.0, 5.0, -3.0 ], \ [ 10.0, -6.0, -3.0, 2.0 ] ] ) return a def wilson_llt ( ): #*****************************************************************************80 # ## WILSON_LLT returns the lower triangular Cholesky factor of the WILSON matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real A(4,4), the matrix. # import numpy as np # # Note that the matrix entries are listed by row. # a = np.array ( [ \ [ 2.236067977499790, 0.0, \ 0.0, 0.0 ], \ [ 3.130495168499706, 0.447213595499957, \ 0.0, 0.0 ], \ [ 2.683281572999748, -0.894427190999918, \ 1.414213562373093, 0.0 ], \ [ 2.236067977499790, 0.0, \ 2.121320343559645, 0.707106781186539 ] ] ) return a def wilson_plu ( ): #*****************************************************************************80 # ## WILSON_PLU returns the PLU factors of the WILSON matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, P(4,4), L(4,4), U(4,4), the PLU factors. # import numpy as np p = np.array ( [ \ [ 0.0, 0.0, 0.0, 1.0 ], \ [ 1.0, 0.0, 0.0, 0.0 ], \ [ 0.0, 1.0, 0.0, 0.0 ], \ [ 0.0, 0.0, 1.0, 0.0 ] ] ) l = np.array ( [ \ [ 1.0, 0.00, 0.00, 0.00 ], \ [ 0.857142857142857, 1.00, 0.00, 0.00 ], \ [ 0.714285714285714, 0.25, 1.00, 0.00 ], \ [ 0.714285714285714, 0.25, -0.20, 1.00 ] ] ) u = np.array ( [ \ [ 7.00, 10.0, 8.0, 7.00 ], \ [ 0.00, -0.571428571428571, 3.142857142857143, 3.00 ], \ [ 0.00, 0.0, 2.50, 4.25 ], \ [ 0.00, 0.0, 0.0, 0.10 ] ] ) return p, l, u def wilson_rhs ( ): #*****************************************************************************80 # ## WILSON_RHS returns the WILSON right hand side. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real B(4,1), the right hand side vector. # import numpy as np b = np.array ( [ [ 23.0 ], [ 32.0 ], [ 33.0 ], [ 31.0 ] ] ) return b def wilson_solution ( ): #*****************************************************************************80 # ## WILSON_SOLUTION returns the WILSON solution. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real X(4,1), the solution vector. # import numpy as np x = np.array ( [ [ 1.0 ], [ 1.0 ], [ 1.0 ], [ 1.0 ] ] ) return x def wilson_test ( ): #*****************************************************************************80 # ## WILSON_TEST tests WILSON. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 20 December 2014 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'WILSON_TEST' print ' WILSON computes the WILSON matrix.' n = 4 a = wilson ( ) r8mat_print ( n, n, a, ' WILSON matrix:' ) print '' print 'WILSON_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) wilson_test ( ) timestamp ( )