#! /usr/bin/env python # def zero ( m, n ): #*****************************************************************************80 # ## ZERO returns the ZERO matrix. # # Formula: # # A(I,J) = 0 # # Example: # # M = 4, N = 5 # # 0 0 0 0 0 # 0 0 0 0 0 # 0 0 0 0 0 # 0 0 0 0 0 # # Properties: # # A is integral. # # A is Toeplitz: constant along diagonals. # # A is a Hankel matrix: constant along anti-diagonals. # # A is a circulant matrix: each row is shifted once to get the next row. # # A is an anticirculant matrix. # # A is singular. # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # LAMBDA(1:N) = 0. # # The matrix of eigenvectors of A is I. # # det ( A ) = 0. # # For any vector v, A*v = 0. # # For any matrix B, A*B = B*A = 0. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the number of rows and columns of # the matrix. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( [ m, n ] ) return a def zero_determinant ( n ): #*****************************************************************************80 # ## ZERO_DETERMINANT returns the determinant of the ZERO matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # value = 0.0 return value def zero_determinant_test ( ): #*****************************************************************************80 # ## ZERO_DETERMINANT_TEST tests ZERO_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 March 2015 # # Author: # # John Burkardt # from zero import zero from r8mat_print import r8mat_print print '' print 'ZERO_DETERMINANT_TEST' print ' ZERO_DETERMINANT computes the determinant of the ZERO matrix.' print '' m = 4 n = m a = zero ( m, n ) r8mat_print ( m, n, a, ' ZERO matrix:' ) value = zero_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'ZERO_DETERMINANT_TEST' print ' Normal end of execution.' return def zero_eigen_right ( n ): #*****************************************************************************80 # ## ZERO_EIGEN_RIGHT returns the right eigenvectors of the ZERO matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): a[i,i] = 1.0 return a def zero_eigenvalues ( n ): #*****************************************************************************80 # ## ZERO_EIGENVALUES returns the eigenvalues of the ZERO matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real LAM(N), the eigenvalues. # import numpy as np lam = np.zeros ( n ) return lam def zero_null_left ( m, n ): #*****************************************************************************80 # ## ZERO_NULL_LEFT returns a left null vector of the ZERO matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the order of the matrix. # # Output, real X(M), the left null vector. # import numpy as np x = np.ones ( m ) return x def zero_null_right ( m, n ): #*****************************************************************************80 # ## ZERO_NULL_RIGHT returns a right null vector of the ZERO matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the order of the matrix. # # Output, real X(N), the right null vector. # import numpy as np x = np.ones ( n ) return x def zero_test ( ): #*****************************************************************************80 # ## ZERO_TEST tests ZERO. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'ZERO_TEST' print ' ZERO computes the ZERO matrix.' m = 4 n = m a = zero ( m, n ) r8mat_print ( m, n, a, ' ZERO matrix:' ) print '' print 'ZERO_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) zero_test ( ) zero_determinant_test ( ) timestamp ( )