#!/usr/bin/env python # def arctan2_values ( n_data ): #*****************************************************************************80 # ## ARCTAN2_VALUES: arc tangent function of two arguments. # # Discussion: # # In Mathematica, the function can be evaluated by: # # ArcTan[x,y] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 December 2014 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz, Irene Stegun, # Handbook of Mathematical Functions, # National Bureau of Standards, 1964, # ISBN: 0-486-61272-4, # LC: QA47.A34. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Cambridge University Press, 1999, # ISBN: 0-521-64314-7, # LC: QA76.95.W65. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, Y, the arguments of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 19 f_vec = np.array ( ( \ -1.5707963267948966192, \ -1.0471975511965977462, \ -0.52359877559829887308, \ 0.00000000000000000000, \ 0.52359877559829887308, \ 1.0471975511965977462, \ 1.5707963267948966192, \ 2.0943951023931954923, \ 2.6179938779914943654, \ 3.1415926535897932385, \ -2.6179938779914943654, \ -2.0943951023931954923, \ -1.5707963267948966192, \ -1.0471975511965977462, \ -0.52359877559829887308, \ 0.00000000000000000000, \ 0.52359877559829887308, \ 1.0471975511965977462, \ 1.5707963267948966192 ) ) x_vec = np.array ( ( \ 0.00000000000000000000, \ 0.50000000000000000000, \ 0.86602540378443864676, \ 1.00000000000000000000, \ 0.86602540378443864676, \ 0.50000000000000000000, \ 0.00000000000000000000, \ -0.50000000000000000000, \ -0.86602540378443864676, \ -1.00000000000000000000, \ -0.86602540378443864676, \ -0.50000000000000000000, \ 0.00000000000000000000, \ 0.50000000000000000000, \ 0.86602540378443864676, \ 1.00000000000000000000, \ 0.86602540378443864676, \ 0.50000000000000000000, \ 0.00000000000000000000 ) ) y_vec = np.array ( ( \ -1.00000000000000000000, \ -0.86602540378443864676, \ -0.50000000000000000000, \ 0.00000000000000000000, \ 0.50000000000000000000, \ 0.86602540378443864676, \ 1.00000000000000000000, \ 0.86602540378443864676, \ 0.50000000000000000000, \ 0.00000000000000000000, \ -0.50000000000000000000, \ -0.86602540378443864676, \ -1.00000000000000000000, \ -0.86602540378443864676, \ -0.50000000000000000000, \ 0.00000000000000000000, \ 0.50000000000000000000, \ 0.86602540378443864676, \ 1.00000000000000000000 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 y = 0.0 f = 0.0 else: x = x_vec[n_data] y = y_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, x, y, f def arctan2_values_test ( ): #*****************************************************************************80 # ## ARCTAN2_VALUES_TEST tests ARCTAN2 VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 December 2014 # # Author: # # John Burkardt # print '' print 'ARCTAN2_VALUES_TEST:' print ' ARCTAN_VALUES stores values of' print ' the arc tangent function.' print '' print ' X Y F(X,Y)' print '' n_data = 0 while ( True ): n_data, x, y, f = arctan2_values ( n_data ) if ( n_data == 0 ): break print ' %12f %12f %24.16g' % ( x, y, f ) print '' print 'ARCTAN2_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) arctan2_values_test ( ) timestamp ( )