#!/usr/bin/env python # def bell_values ( n_data ): #*****************************************************************************80 # ## BELL_VALUES returns some values of the Bell numbers. # # Discussion: # # The Bell number B(N) is the number of restricted growth functions on N. # # Note that the Stirling numbers of the second kind, S^m_n, count the # number of partitions of N objects into M classes, and so it is # true that # # B(N) = S^1_N + S^2_N + ... + S^N_N. # # The Bell numbers were named for Eric Temple Bell. # # In Mathematica, the function can be evaluated by # # Sum[StirlingS2[n,m],{m,1,n}] # # The Bell number B(N) is defined as the number of partitions (of # any size) of a set of N distinguishable objects. # # A partition of a set is a division of the objects of the set into # subsets. # # Example: # # There are 15 partitions of a set of 4 objects: # # (1234), # (123) (4), # (124) (3), # (12) (34), # (12) (3) (4), # (134) (2), # (13) (24), # (13) (2) (4), # (14) (23), # (1) (234), # (1) (23) (4), # (14) (2) (3), # (1) (24) (3), # (1) (2) (34), # (1) (2) (3) (4). # # and so B(4) = 15. # # First values: # # N B(N) # 0 1 # 1 1 # 2 2 # 3 5 # 4 15 # 5 52 # 6 203 # 7 877 # 8 4140 # 9 21147 # 10 115975 # # Recursion: # # B(I) = sum ( 1 <= J <=I ) Binomial ( I-1, J-1 ) * B(I-J) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 November 2014 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, the order of the Bell number. # # Output, integer C, the value of the Bell number. # import numpy as np n_max = 11 c_vec = np.array ( ( 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975 ) ) n_vec = np.array ( ( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 c = 0 else: n = n_vec[n_data] c = c_vec[n_data] n_data = n_data + 1 return n_data, n, c def bell_values_test ( ): #*****************************************************************************80 # ## BELL_VALUES_TEST demonstrates the use of BELL_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 November 2014 # # Author: # # John Burkardt # print '' print 'BELL_VALUES_TEST:' print ' BELL_VALUES returns values of' print ' the Bell numbers.' print '' print ' N BELL(N)' print '' n_data = 0 while ( True ): n_data, n, c = bell_values ( n_data ) if ( n_data == 0 ): break print '%6d %10d' % ( n, c ) print '' print 'BELL_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bell_values_test ( ) timestamp ( )