#!/usr/bin/env python # def bernstein_poly_01_values ( n_data ): #*****************************************************************************80 # ## BERNSTEIN_POLY_01_VALUES returns some values of the Bernstein polynomials. # # Discussion: # # The Bernstein polynomials are assumed to be based on [0,1]. # # The formula for the Bernstein polynomials is # # B(N,I)(X) = [N!/(I!*(N-I)!)] * (1-X)^(N-I) * X^I # # In Mathematica, the function can be evaluated by: # # Binomial[n,i] * (1-x)^(n-i) * x^i # # First values: # # B(0,0)(X) = 1 # # B(1,0)(X) = 1-X # B(1,1)(X) = X # # B(2,0)(X) = (1-X)^2 # B(2,1)(X) = 2 * (1-X) * X # B(2,2)(X) = X^2 # # B(3,0)(X) = (1-X)^3 # B(3,1)(X) = 3 * (1-X)^2 * X # B(3,2)(X) = 3 * (1-X) * X^2 # B(3,3)(X) = X^3 # # B(4,0)(X) = (1-X)^4 # B(4,1)(X) = 4 * (1-X)^3 * X # B(4,2)(X) = 6 * (1-X)^2 * X^2 # B(4,3)(X) = 4 * (1-X) * X^3 # B(4,4)(X) = X^4 # # Special values: # # B(N,I)(X) has a unique maximum value at X = I/N. # # B(N,I)(X) has an I-fold zero at 0 and and N-I fold zero at 1. # # B(N,I)(1/2) = C(N,K) / 2^N # # For a fixed X and N, the polynomials add up to 1: # # Sum ( 0 <= I <= N ) B(N,I)(X) = 1 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 December 2014 # # Author: # # John Burkardt # # Reference: # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, the degree of the polynomial. # # Output, integer K, the index of the polynomial. # # Output, real X, the argument of the polynomial. # # Output, real F, the value of the polynomial B(N,K)(X). # import numpy as np n_max = 15 f_vec = np.array ( ( \ 0.1000000000000000E+01, \ 0.7500000000000000E+00, \ 0.2500000000000000E+00, \ 0.5625000000000000E+00, \ 0.3750000000000000E+00, \ 0.6250000000000000E-01, \ 0.4218750000000000E+00, \ 0.4218750000000000E+00, \ 0.1406250000000000E+00, \ 0.1562500000000000E-01, \ 0.3164062500000000E+00, \ 0.4218750000000000E+00, \ 0.2109375000000000E+00, \ 0.4687500000000000E-01, \ 0.3906250000000000E-02 ) ) k_vec = np.array ( ( \ 0, \ 0, 1, \ 0, 1, 2, \ 0, 1, 2, 3, \ 0, 1, 2, 3, 4 )) n_vec = np.array ( ( \ 0, \ 1, 1, \ 2, 2, 2, \ 3, 3, 3, 3, \ 4, 4, 4, 4, 4 )) x_vec = np.array ( ( \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 k = 0 x = 0.0 f = 0.0 else: n = n_vec[n_data] k = k_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, n, k, x, f def bernstein_poly_01_values_test ( ): #*****************************************************************************80 # ## BERNSTEIN_POLY_01_VALUES_TEST tests BERNSTEIN_POLY_01_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 December 2014 # # Author: # # John Burkardt # print '' print 'BERNSTEIN_POLY_01_VALUES_TEST:' print ' BERNSTEIN_POLY_01_VALUES stores values of Bernstein polynomials.' print '' print ' N K X F' print '' n_data = 0 while ( True ): n_data, n, k, x, f = bernstein_poly_01_values ( n_data ) if ( n_data == 0 ): break print ' %6d %6d %12f %24.16g' % ( n, k, x, f ) print '' print 'BERNSTEIN_POLY_01_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bernstein_poly_01_values_test ( ) timestamp ( )