#!/usr/bin/env python # def bessel_i0_int_values ( n_data ): #*****************************************************************************80 # ## BESSEL_I0_INT_VALUES returns some values of the Bessel I0 integral. # # Discussion: # # The function is defined by: # # I0_INT(x) = Integral ( 0 <= t <= x ) I0(t) dt # # The data was reported by McLeod. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 30 December 2014 # # Author: # # John Burkardt # # Reference: # # Allan McLeod, # Algorithm 757, MISCFUN: A software package to compute uncommon # special functions, # ACM Transactions on Mathematical Software, # Volume 22, Number 3, September 1996, pages 288-301. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 20 fx_vec = np.array ( ( \ 0.19531256208818052282E-02, \ -0.39062549670565734544E-02, \ 0.62520348032546565850E-01, \ 0.12516285581366971819E+00, \ -0.51051480879740303760E+00, \ 0.10865210970235898158E+01, \ 0.27750019054282535299E+01, \ -0.13775208868039716639E+02, \ 0.46424372058106108576E+03, \ 0.64111867658021584522E+07, \ -0.10414860803175857953E+08, \ 0.44758598913855743089E+08, \ -0.11852985311558287888E+09, \ 0.31430078220715992752E+09, \ -0.83440212900794309620E+09, \ 0.22175367579074298261E+10, \ 0.58991731842803636487E+10, \ -0.41857073244691522147E+11, \ 0.79553885818472357663E+12, \ 0.15089715082719201025E+17 ) ) x_vec = np.array ( ( \ 0.0019531250E+00, \ -0.0039062500E+00, \ 0.0625000000E+00, \ 0.1250000000E+00, \ -0.5000000000E+00, \ 1.0000000000E+00, \ 2.0000000000E+00, \ -4.0000000000E+00, \ 8.0000000000E+00, \ 18.0000000000E+00, \ -18.5000000000E+00, \ 20.0000000000E+00, \ -21.0000000000E+00, \ 22.0000000000E+00, \ -23.0000000000E+00, \ 24.0000000000E+00, \ 25.0000000000E+00, \ -27.0000000000E+00, \ 30.0000000000E+00, \ 40.0000000000E+00 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 fx = 0.0 else: x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, x, fx def bessel_i0_int_values_test ( ): #*****************************************************************************80 # ## BESSEL_I0_INT_VALUES_TEST demonstrates the use of BESSEL_I0_INT_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 30 December 2014 # # Author: # # John Burkardt # print '' print 'BESSEL_I0_INT_VALUES_TEST:' print ' BESSEL_I0_INT_VALUES stores values of the Bessel I integral. of order 0.' print '' print ' X Int_I(0,X)' print '' n_data = 0 while ( True ): n_data, x, fx = bessel_i0_int_values ( n_data ) if ( n_data == 0 ): break print ' %12f %24.16g' % ( x, fx ) print '' print 'BESSEL_I0_INT_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bessel_i0_int_values_test ( ) timestamp ( )