#!/usr/bin/env python # def bessel_i0_values ( n_data ): #*****************************************************************************80 # ## BESSEL_I0_VALUES returns some values of the I0 Bessel function. # # Discussion: # # The modified Bessel functions In(Z) and Kn(Z) are solutions of # the differential equation # # Z^2 W'' + Z * W' - ( Z^2 + N^2 ) * W = 0. # # The modified Bessel function I0(Z) corresponds to N = 0. # # In Mathematica, the function can be evaluated by: # # BesselI[0,x] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 December 2014 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 20 fx_vec = np.array ( ( \ 0.1000000000000000E+01, \ 0.1010025027795146E+01, \ 0.1040401782229341E+01, \ 0.1092045364317340E+01, \ 0.1166514922869803E+01, \ 0.1266065877752008E+01, \ 0.1393725584134064E+01, \ 0.1553395099731217E+01, \ 0.1749980639738909E+01, \ 0.1989559356618051E+01, \ 0.2279585302336067E+01, \ 0.3289839144050123E+01, \ 0.4880792585865024E+01, \ 0.7378203432225480E+01, \ 0.1130192195213633E+02, \ 0.1748117185560928E+02, \ 0.2723987182360445E+02, \ 0.6723440697647798E+02, \ 0.4275641157218048E+03, \ 0.2815716628466254E+04 ) ) x_vec = np.array ( ( \ 0.00E+00, \ 0.20E+00, \ 0.40E+00, \ 0.60E+00, \ 0.80E+00, \ 0.10E+01, \ 0.12E+01, \ 0.14E+01, \ 0.16E+01, \ 0.18E+01, \ 0.20E+01, \ 0.25E+01, \ 0.30E+01, \ 0.35E+01, \ 0.40E+01, \ 0.45E+01, \ 0.50E+01, \ 0.60E+01, \ 0.80E+01, \ 0.10E+02 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 fx = 0.0 else: x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, x, fx def bessel_i0_values_test ( ): #*****************************************************************************80 # ## BESSEL_I0_VALUES_TEST demonstrates the use of BESSEL_I0_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 December 2014 # # Author: # # John Burkardt # print '' print 'BESSEL_I0_VALUES_TEST:' print ' BESSEL_I0_VALUES stores values of the Bessel I function. of order 0.' print '' print ' X I(0,X)' print '' n_data = 0 while ( True ): n_data, x, fx = bessel_i0_values ( n_data ) if ( n_data == 0 ): break print ' %12f %24.16g' % ( x, fx ) print '' print 'BESSEL_I0_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bessel_i0_values_test ( ) timestamp ( )