#!/usr/bin/env python # def bessel_in_values ( n_data ): #*****************************************************************************80 # ## BESSEL_IN_VALUES returns some values of the In Bessel function. # # Discussion: # # The modified Bessel functions In(Z) and Kn(Z) are solutions of # the differential equation # # Z^2 W'' + Z * W' - ( Z^2 + N^2 ) * W = 0. # # In Mathematica, the function can be evaluated by: # # BesselI[n,x] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 02 January 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer NU, the order of the function. # # Output, real X, the argument of the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 28 fx_vec = np.array ( ( \ 0.5016687513894678E-02, \ 0.1357476697670383E+00, \ 0.6889484476987382E+00, \ 0.1276466147819164E+01, \ 0.2245212440929951E+01, \ 0.1750561496662424E+02, \ 0.2281518967726004E+04, \ 0.3931278522104076E+08, \ 0.2216842492433190E-01, \ 0.2127399592398527E+00, \ 0.1033115016915114E+02, \ 0.1758380716610853E+04, \ 0.2677764138883941E+21, \ 0.2714631559569719E-03, \ 0.9825679323131702E-02, \ 0.2157974547322546E+01, \ 0.7771882864032600E+03, \ 0.2278548307911282E+21, \ 0.2752948039836874E-09, \ 0.3016963879350684E-06, \ 0.4580044419176051E-02, \ 0.2189170616372337E+02, \ 0.1071597159477637E+21, \ 0.3966835985819020E-24, \ 0.4310560576109548E-18, \ 0.5024239357971806E-10, \ 0.1250799735644948E-03, \ 0.5442008402752998E+19 ) ) nu_vec = np.array ( ( \ 2, 2, 2, 2, \ 2, 2, 2, 2, \ 3, 3, 3, 3, \ 3, 5, 5, 5, \ 5, 5, 10, 10, \ 10, 10, 10, 20, \ 20, 20, 20, 20 )) x_vec = np.array ( ( \ 0.2E+00, \ 1.0E+00, \ 2.0E+00, \ 2.5E+00, \ 3.0E+00, \ 5.0E+00, \ 10.0E+00, \ 20.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 nu = 0 x = 0.0 fx = 0.0 else: nu = nu_vec[n_data] x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, nu, x, fx def bessel_in_values_test ( ): #*****************************************************************************80 # ## BESSEL_IN_VALUES_TEST demonstrates the use of BESSEL_IN_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 02 January 2015 # # Author: # # John Burkardt # print '' print 'BESSEL_IN_VALUES_TEST:' print ' BESSEL_IN_VALUES stores values of the Bessel I function. of order NU.' print '' print ' NU X I(NU,X)' print '' n_data = 0 while ( True ): n_data, nu, x, fx = bessel_in_values ( n_data ) if ( n_data == 0 ): break print ' %4d %12f %24.16g' % ( nu, x, fx ) print '' print 'BESSEL_IN_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bessel_in_values_test ( ) timestamp ( )