#!/usr/bin/env python # def bessel_ix_values ( n_data ): #*****************************************************************************80 # ## BESSEL_IX_VALUES returns some values of the Ix Bessel function. # # Discussion: # # This set of data considers the less common case in which the # index of the Bessel function In is actually not an integer. # We may suggest this case by occasionally replacing the symbol # "In" by "Ix". # # The modified Bessel functions In(Z) and Kn(Z) are solutions of # the differential equation # # Z^2 W'' + Z * W' - ( Z^2 + N^2 ) * W = 0. # # In Mathematica, the function can be evaluated by: # # BesselI[n,x] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 January 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz, Irene Stegun, # Handbook of Mathematical Functions, # National Bureau of Standards, 1964, # ISBN: 0-486-61272-4, # LC: QA47.A34. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Cambridge University Press, 1999, # ISBN: 0-521-64314-7, # LC: QA76.95.W65. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real NU, the order of the function. # # Output, real X, the argument of the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 28 fx_vec = np.array ( ( \ 0.3592084175833614E+00, \ 0.9376748882454876E+00, \ 2.046236863089055E+00, \ 3.053093538196718E+00, \ 4.614822903407601E+00, \ 26.47754749755907E+00, \ 2778.784603874571E+00, \ 4.327974627242893E+07, \ 0.2935253263474798E+00, \ 1.099473188633110E+00, \ 21.18444226479414E+00, \ 2500.906154942118E+00, \ 2.866653715931464E+20, \ 0.05709890920304825E+00, \ 0.3970270801393905E+00, \ 13.76688213868258E+00, \ 2028.512757391936E+00, \ 2.753157630035402E+20, \ 0.4139416015642352E+00, \ 1.340196758982897E+00, \ 22.85715510364670E+00, \ 2593.006763432002E+00, \ 2.886630075077766E+20, \ 0.03590910483251082E+00, \ 0.2931108636266483E+00, \ 11.99397010023068E+00, \ 1894.575731562383E+00, \ 2.716911375760483E+20 ) ) nu_vec = np.array ( ( \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 1.50E+00, \ 1.50E+00, \ 1.50E+00, \ 1.50E+00, \ 1.50E+00, \ 2.50E+00, \ 2.50E+00, \ 2.50E+00, \ 2.50E+00, \ 2.50E+00, \ 1.25E+00, \ 1.25E+00, \ 1.25E+00, \ 1.25E+00, \ 1.25E+00, \ 2.75E+00, \ 2.75E+00, \ 2.75E+00, \ 2.75E+00, \ 2.75E+00 )) x_vec = np.array ( ( \ 0.2E+00, \ 1.0E+00, \ 2.0E+00, \ 2.5E+00, \ 3.0E+00, \ 5.0E+00, \ 10.0E+00, \ 20.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 nu = 0 x = 0.0 fx = 0.0 else: nu = nu_vec[n_data] x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, nu, x, fx def bessel_ix_values_test ( ): #*****************************************************************************80 # ## BESSEL_IX_VALUES_TEST demonstrates the use of BESSEL_IX_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 January 2015 # # Author: # # John Burkardt # print '' print 'BESSEL_IX_VALUES_TEST:' print ' BESSEL_IX_VALUES stores values of the Bessel I function. of real order NU.' print '' print ' NU X I(NU,X)' print '' n_data = 0 while ( True ): n_data, nu, x, fx = bessel_ix_values ( n_data ) if ( n_data == 0 ): break print ' %12f %12f %24.16g' % ( nu, x, fx ) print '' print 'BESSEL_IX_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bessel_ix_values_test ( ) timestamp ( )