#!/usr/bin/env python # def bessel_j0_int_values ( n_data ): #*****************************************************************************80 # ## BESSEL_J0_INT_VALUES returns some values of the Bessel J0 integral. # # Discussion: # # The function is defined by: # # J0_INT(x) = Integral ( 0 <= t <= x ) J0(t) dt # # The data was reported by McLeod. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 January 2015 # # Author: # # John Burkardt # # Reference: # # Allan McLeod, # Algorithm 757, MISCFUN: A software package to compute uncommon # special functions, # ACM Transactions on Mathematical Software, # Volume 22, Number 3, September 1996, pages 288-301. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 20 fx_vec = np.array ( ( \ 0.97656242238978822427E-03, \ 0.39062450329491108875E-02, \ -0.62479657927917933620E-01, \ 0.12483733492120479139E+00, \ -0.48968050664604505505E+00, \ 0.91973041008976023931E+00, \ -0.14257702931970265690E+01, \ 0.10247341594606064818E+01, \ -0.12107468348304501655E+01, \ 0.11008652032736190799E+01, \ -0.10060334829904124192E+01, \ 0.81330572662485953519E+00, \ -0.10583788214211277585E+01, \ 0.87101492116545875169E+00, \ -0.88424908882547488420E+00, \ 0.11257761503599914603E+01, \ -0.90141212258183461184E+00, \ 0.91441344369647797803E+00, \ -0.94482281938334394886E+00, \ 0.92266255696016607257E+00 ) ) x_vec = np.array ( ( \ 0.0009765625E+00, \ 0.0039062500E+00, \ -0.0625000000E+00, \ 0.1250000000E+00, \ -0.5000000000E+00, \ 1.0000000000E+00, \ -2.0000000000E+00, \ 4.0000000000E+00, \ -8.0000000000E+00, \ 16.0000000000E+00, \ -16.5000000000E+00, \ 18.0000000000E+00, \ -20.0000000000E+00, \ 25.0000000000E+00, \ -30.0000000000E+00, \ 40.0000000000E+00, \ -50.0000000000E+00, \ 75.0000000000E+00, \ -80.0000000000E+00, \ 100.0000000000E+00 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 fx = 0.0 else: x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, x, fx def bessel_j0_int_values_test ( ): #*****************************************************************************80 # ## BESSEL_J0_INT_VALUES_TEST demonstrates the use of BESSEL_J0_INT_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 January 2015 # # Author: # # John Burkardt # print '' print 'BESSEL_J0_INT_VALUES_TEST:' print ' BESSEL_J0_INT_VALUES stores values of the Bessel J integral. of order 0.' print '' print ' X Int_J(0,X)' print '' n_data = 0 while ( True ): n_data, x, fx = bessel_j0_int_values ( n_data ) if ( n_data == 0 ): break print ' %12f %24.16g' % ( x, fx ) print '' print 'BESSEL_J0_INT_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bessel_j0_int_values_test ( ) timestamp ( )