#!/usr/bin/env python # def bessel_j0_spherical_values ( n_data ): #*****************************************************************************80 # ## BESSEL_J0_SPHERICAL_VALUES returns some values of the Spherical Bessel function j0. # # Discussion: # # In Mathematica, the function can be evaluated by: # # Sqrt[Pi/(2*x)] * BesselJ[1/2,x] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 January 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 21 fx_vec = np.array ( ( \ 0.9983341664682815E+00, \ 0.9933466539753061E+00, \ 0.9735458557716262E+00, \ 0.9410707889917256E+00, \ 0.8966951136244035E+00, \ 0.8414709848078965E+00, \ 0.7766992383060220E+00, \ 0.7038926642774716E+00, \ 0.6247335019009407E+00, \ 0.5410264615989973E+00, \ 0.4546487134128408E+00, \ 0.3674983653725410E+00, \ 0.2814429918963129E+00, \ 0.1982697583928709E+00, \ 0.1196386250556803E+00, \ 0.4704000268662241E-01, \ -0.1824191982111872E-01, \ -0.7515914765495039E-01, \ -0.1229223453596812E+00, \ -0.1610152344586103E+00, \ -0.1892006238269821E+00 ) ) x_vec = np.array ( ( \ 0.1E+00, \ 0.2E+00, \ 0.4E+00, \ 0.6E+00, \ 0.8E+00, \ 1.0E+00, \ 1.2E+00, \ 1.4E+00, \ 1.6E+00, \ 1.8E+00, \ 2.0E+00, \ 2.2E+00, \ 2.4E+00, \ 2.6E+00, \ 2.8E+00, \ 3.0E+00, \ 3.2E+00, \ 3.4E+00, \ 3.6E+00, \ 3.8E+00, \ 4.0E+00 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 fx = 0.0 else: x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, x, fx def bessel_j0_spherical_values_test ( ): #*****************************************************************************80 # ## BESSEL_J0_SPHERICAL_VALUES_TEST tests BESSEL_J0_SPHERICAL_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 January 2015 # # Author: # # John Burkardt # print '' print 'BESSEL_J0_SPHERICAL_VALUES_TEST:' print ' BESSEL_J0_SPHERICAL_VALUES stores values of the spherical Bessel J function. of order 0.' print '' print ' X Spherical J(0,X)' print '' n_data = 0 while ( True ): n_data, x, fx = bessel_j0_spherical_values ( n_data ) if ( n_data == 0 ): break print ' %12f %24.16g' % ( x, fx ) print '' print 'BESSEL_J0_SPHERICAL_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bessel_j0_spherical_values_test ( ) timestamp ( )