#!/usr/bin/env python # def bessel_j1_spherical_values ( n_data ): #*****************************************************************************80 # ## BESSEL_J1_SPHERICAL_VALUES returns some values of the Spherical Bessel function j1. # # Discussion: # # In Mathematica, the function can be evaluated by: # # Sqrt[Pi/(2*x)] * BesselJ[3/2,x] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 10 January 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 21 fx_vec = np.array ( ( \ 0.3330001190255757E-01, \ 0.6640038067032223E-01, \ 0.1312121544218529E+00, \ 0.1928919568034122E+00, \ 0.2499855053465475E+00, \ 0.3011686789397568E+00, \ 0.3452845698577903E+00, \ 0.3813753724123076E+00, \ 0.4087081401263934E+00, \ 0.4267936423844913E+00, \ 0.4353977749799916E+00, \ 0.4345452193763121E+00, \ 0.4245152947656493E+00, \ 0.4058301968314685E+00, \ 0.3792360591872637E+00, \ 0.3456774997623560E+00, \ 0.3062665174917607E+00, \ 0.2622467779189737E+00, \ 0.2149544641595738E+00, \ 0.1657769677515280E+00, \ 0.1161107492591575E+00 ) ) x_vec = np.array ( ( \ 0.1E+00, \ 0.2E+00, \ 0.4E+00, \ 0.6E+00, \ 0.8E+00, \ 1.0E+00, \ 1.2E+00, \ 1.4E+00, \ 1.6E+00, \ 1.8E+00, \ 2.0E+00, \ 2.2E+00, \ 2.4E+00, \ 2.6E+00, \ 2.8E+00, \ 3.0E+00, \ 3.2E+00, \ 3.4E+00, \ 3.6E+00, \ 3.8E+00, \ 4.0E+00 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 fx = 0.0 else: x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, x, fx def bessel_j1_spherical_values_test ( ): #*****************************************************************************80 # ## BESSEL_J1_SPHERICAL_VALUES_TEST tests BESSEL_J1_SPHERICAL_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 10 January 2015 # # Author: # # John Burkardt # print '' print 'BESSEL_J1_SPHERICAL_VALUES_TEST:' print ' BESSEL_J1_SPHERICAL_VALUES stores values of the spherical Bessel J function. of order 1.' print '' print ' X Spherical J(1,X)' print '' n_data = 0 while ( True ): n_data, x, fx = bessel_j1_spherical_values ( n_data ) if ( n_data == 0 ): break print ' %12f %24.16g' % ( x, fx ) print '' print 'BESSEL_J1_SPHERICAL_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bessel_j1_spherical_values_test ( ) timestamp ( )