#!/usr/bin/env python # def bessel_jx_values ( n_data ): #*****************************************************************************80 # ## BESSEL_JX_VALUES returns some values of the Jx Bessel function. # # Discussion: # # This set of data considers the less common case in which the # index of the Bessel function Jn is actually not an integer. # We may suggest this case by occasionally replacing the symbol # "Jn" by "Jx". # # In Mathematica, the function can be evaluated by: # # BesselJ[n,x] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 January 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz, Irene Stegun, # Handbook of Mathematical Functions, # National Bureau of Standards, 1964, # ISBN: 0-486-61272-4, # LC: QA47.A34. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Cambridge University Press, 1999, # ISBN: 0-521-64314-7, # LC: QA76.95.W65. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real NU, the order of the function. # # Output, real X, the argument of the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 28 fx_vec = np.array ( ( \ 0.3544507442114011E+00, \ 0.6713967071418031E+00, \ 0.5130161365618278E+00, \ 0.3020049060623657E+00, \ 0.06500818287737578E+00, \ -0.3421679847981618E+00, \ -0.1372637357550505E+00, \ 0.1628807638550299E+00, \ 0.2402978391234270E+00, \ 0.4912937786871623E+00, \ -0.1696513061447408E+00, \ 0.1979824927558931E+00, \ -0.1094768729883180E+00, \ 0.04949681022847794E+00, \ 0.2239245314689158E+00, \ 0.2403772011113174E+00, \ 0.1966584835818184E+00, \ 0.02303721950962553E+00, \ 0.3314145508558904E+00, \ 0.5461734240402840E+00, \ -0.2616584152094124E+00, \ 0.1296035513791289E+00, \ -0.1117432171933552E+00, \ 0.03142623570527935E+00, \ 0.1717922192746527E+00, \ 0.3126634069544786E+00, \ 0.1340289119304364E+00, \ 0.06235967135106445E+00 ) ) nu_vec = np.array ( ( \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 1.50E+00, \ 1.50E+00, \ 1.50E+00, \ 1.50E+00, \ 1.50E+00, \ 2.50E+00, \ 2.50E+00, \ 2.50E+00, \ 2.50E+00, \ 2.50E+00, \ 1.25E+00, \ 1.25E+00, \ 1.25E+00, \ 1.25E+00, \ 1.25E+00, \ 2.75E+00, \ 2.75E+00, \ 2.75E+00, \ 2.75E+00, \ 2.75E+00 )) x_vec = np.array ( ( \ 0.2E+00, \ 1.0E+00, \ 2.0E+00, \ 2.5E+00, \ 3.0E+00, \ 5.0E+00, \ 10.0E+00, \ 20.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 nu = 0 x = 0.0 fx = 0.0 else: nu = nu_vec[n_data] x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, nu, x, fx def bessel_jx_values_test ( ): #*****************************************************************************80 # ## BESSEL_JX_VALUES_TEST demonstrates the use of BESSEL_JX_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 January 2015 # # Author: # # John Burkardt # print '' print 'BESSEL_JX_VALUES_TEST:' print ' BESSEL_JX_VALUES stores values of the Bessel J function. of real order NU.' print '' print ' NU X J(NU,X)' print '' n_data = 0 while ( True ): n_data, nu, x, fx = bessel_jx_values ( n_data ) if ( n_data == 0 ): break print ' %12f %12f %24.16g' % ( nu, x, fx ) print '' print 'BESSEL_JX_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bessel_jx_values_test ( ) timestamp ( )