#!/usr/bin/env python # def bessel_k0_int_values ( n_data ): #*****************************************************************************80 # ## BESSEL_K0_INT_VALUES returns some values of the Bessel K0 integral. # # Discussion: # # The function is defined by: # # K0_INT(x) = Integral ( 0 <= t <= x ) K0(t) dt # # The data was reported by McLeod. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 January 2015 # # Author: # # John Burkardt # # Reference: # # Allan McLeod, # Algorithm 757, MISCFUN: A software package to compute uncommon # special functions, # ACM Transactions on Mathematical Software, # Volume 22, Number 3, September 1996, pages 288-301. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 20 fx_vec = np.array ( ( \ 0.78587929563466784589E-02, \ 0.26019991617330578111E-01, \ 0.24311842237541167904E+00, \ 0.39999633750480508861E+00, \ 0.92710252093114907345E+00, \ 0.12425098486237782662E+01, \ 0.14736757343168286825E+01, \ 0.15606495706051741364E+01, \ 0.15673873907283660493E+01, \ 0.15696345532693743714E+01, \ 0.15701153443250786355E+01, \ 0.15706574852894436220E+01, \ 0.15707793116159788598E+01, \ 0.15707942066465767196E+01, \ 0.15707962315469192247E+01, \ 0.15707963262340149876E+01, \ 0.15707963267948756308E+01, \ 0.15707963267948966192E+01, \ 0.15707963267948966192E+01, \ 0.15707963267948966192E+01 ) ) x_vec = np.array ( ( \ 0.0009765625E+00, \ 0.0039062500E+00, \ 0.0625000000E+00, \ 0.1250000000E+00, \ 0.5000000000E+00, \ 1.0000000000E+00, \ 2.0000000000E+00, \ 4.0000000000E+00, \ 5.0000000000E+00, \ 6.0000000000E+00, \ 6.5000000000E+00, \ 8.0000000000E+00, \ 10.0000000000E+00, \ 12.0000000000E+00, \ 15.0000000000E+00, \ 20.0000000000E+00, \ 30.0000000000E+00, \ 50.0000000000E+00, \ 80.0000000000E+00, \ 100.0000000000E+00 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 fx = 0.0 else: x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, x, fx def bessel_k0_int_values_test ( ): #*****************************************************************************80 # ## BESSEL_K0_INT_VALUES_TEST demonstrates the use of BESSEL_K0_INT_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 January 2015 # # Author: # # John Burkardt # print '' print 'BESSEL_K0_INT_VALUES_TEST:' print ' BESSEL_K0_INT_VALUES stores values of the Bessel K integral. of order 0.' print '' print ' X Int_K(0,X)' print '' n_data = 0 while ( True ): n_data, x, fx = bessel_k0_int_values ( n_data ) if ( n_data == 0 ): break print ' %12f %24.16g' % ( x, fx ) print '' print 'BESSEL_K0_INT_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bessel_k0_int_values_test ( ) timestamp ( )