#!/usr/bin/env python # def bessel_k0_values ( n_data ): #*****************************************************************************80 # ## BESSEL_K0_VALUES returns some values of the K0 Bessel function. # # Discussion: # # The modified Bessel functions In(Z) and Kn(Z) are solutions of # the differential equation # # Z^2 W'' + Z * W' - ( Z^2 + N^2 ) * W = 0. # # The modified Bessel function K0(Z) corresponds to N = 0. # # In Mathematica, the function can be evaluated by: # # BesselK[0,x] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 December 2014 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 20 fx_vec = np.array ( ( \ 0.2427069024702017E+01, \ 0.1752703855528146E+01, \ 0.1114529134524434E+01, \ 0.7775220919047293E+00, \ 0.5653471052658957E+00, \ 0.4210244382407083E+00, \ 0.3185082202865936E+00, \ 0.2436550611815419E+00, \ 0.1879547519693323E+00, \ 0.1459314004898280E+00, \ 0.1138938727495334E+00, \ 0.6234755320036619E-01, \ 0.3473950438627925E-01, \ 0.1959889717036849E-01, \ 0.1115967608585302E-01, \ 0.6399857243233975E-02, \ 0.3691098334042594E-02, \ 0.1243994328013123E-02, \ 0.1464707052228154E-03, \ 0.1778006231616765E-04 ) ) x_vec = np.array ( ( \ 0.1E+00, \ 0.2E+00, \ 0.4E+00, \ 0.6E+00, \ 0.8E+00, \ 1.0E+00, \ 1.2E+00, \ 1.4E+00, \ 1.6E+00, \ 1.8E+00, \ 2.0E+00, \ 2.5E+00, \ 3.0E+00, \ 3.5E+00, \ 4.0E+00, \ 4.5E+00, \ 5.0E+00, \ 6.0E+00, \ 8.0E+00, \ 10.0E+00 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 fx = 0.0 else: x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, x, fx def bessel_k0_values_test ( ): #*****************************************************************************80 # ## BESSEL_K0_VALUES_TEST demonstrates the use of BESSEL_K0_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 December 2014 # # Author: # # John Burkardt # print '' print 'BESSEL_K0_VALUES_TEST:' print ' BESSEL_K0_VALUES stores values of the Bessel K function. of order 0.' print '' print ' X K(0,X)' print '' n_data = 0 while ( True ): n_data, x, fx = bessel_k0_values ( n_data ) if ( n_data == 0 ): break print ' %12f %24.16g' % ( x, fx ) print '' print 'BESSEL_K0_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bessel_k0_values_test ( ) timestamp ( )