#!/usr/bin/env python # def bessel_kn_values ( n_data ): #*****************************************************************************80 # ## BESSEL_KN_VALUES returns some values of the Kn Bessel function. # # Discussion: # # The modified Bessel functions In(Z) and Kn(Z) are solutions of # the differential equation # # Z^2 * W'' + Z * W' - ( Z^2 + N^2 ) * W = 0. # # In Mathematica, the function can be evaluated by: # # BesselK[n,x] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 January 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer NU, the order of the function. # # Output, real X, the argument of the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 28 fx_vec = np.array ( ( \ 0.4951242928773287E+02, \ 0.1624838898635177E+01, \ 0.2537597545660559E+00, \ 0.1214602062785638E+00, \ 0.6151045847174204E-01, \ 0.5308943712223460E-02, \ 0.2150981700693277E-04, \ 0.6329543612292228E-09, \ 0.7101262824737945E+01, \ 0.6473853909486342E+00, \ 0.8291768415230932E-02, \ 0.2725270025659869E-04, \ 0.3727936773826211E-22, \ 0.3609605896012407E+03, \ 0.9431049100596467E+01, \ 0.3270627371203186E-01, \ 0.5754184998531228E-04, \ 0.4367182254100986E-22, \ 0.1807132899010295E+09, \ 0.1624824039795591E+06, \ 0.9758562829177810E+01, \ 0.1614255300390670E-02, \ 0.9150988209987996E-22, \ 0.6294369360424535E+23, \ 0.5770856852700241E+17, \ 0.4827000520621485E+09, \ 0.1787442782077055E+03, \ 0.1706148379722035E-20 ) ) nu_vec = np.array ( ( \ 2, 2, 2, 2, \ 2, 2, 2, 2, \ 3, 3, 3, 3, \ 3, 5, 5, 5, \ 5, 5, 10, 10, \ 10, 10, 10, 20, \ 20, 20, 20, 20 )) x_vec = np.array ( ( \ 0.2E+00, \ 1.0E+00, \ 2.0E+00, \ 2.5E+00, \ 3.0E+00, \ 5.0E+00, \ 10.0E+00, \ 20.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 nu = 0 x = 0.0 fx = 0.0 else: nu = nu_vec[n_data] x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, nu, x, fx def bessel_kn_values_test ( ): #*****************************************************************************80 # ## BESSEL_KN_VALUES_TEST demonstrates the use of BESSEL_KN_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 January 2015 # # Author: # # John Burkardt # print '' print 'BESSEL_KN_VALUES_TEST:' print ' BESSEL_KN_VALUES stores values of the Bessel K function. of order NU.' print '' print ' NU X K(NU,X)' print '' n_data = 0 while ( True ): n_data, nu, x, fx = bessel_kn_values ( n_data ) if ( n_data == 0 ): break print ' %4d %12f %24.16g' % ( nu, x, fx ) print '' print 'BESSEL_KN_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bessel_kn_values_test ( ) timestamp ( )