#!/usr/bin/env python # def bessel_kx_values ( n_data ): #*****************************************************************************80 # ## BESSEL_KX_VALUES returns some values of the Kx Bessel function. # # Discussion: # # This set of data considers the less common case in which the # index of the Bessel function Kn is actually not an integer. # We may suggest this case by occasionally replacing the symbol # "Kn" by "Kx". # # The modified Bessel functions In(Z) and Kn(Z) are solutions of # the differential equation # # Z^2 W'' + Z * W' - ( Z^2 + N^2 ) * W = 0. # # In Mathematica, the function can be evaluated by: # # BesselK[n,x] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 January 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz, Irene Stegun, # Handbook of Mathematical Functions, # National Bureau of Standards, 1964, # ISBN: 0-486-61272-4, # LC: QA47.A34. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Cambridge University Press, 1999, # ISBN: 0-521-64314-7, # LC: QA76.95.W65. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real NU, the order of the function. # # Output, real X, the argument of the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 28 fx_vec = np.array ( ( \ 2.294489339798475E+00, \ 0.4610685044478946E+00, \ 0.1199377719680614E+00, \ 0.06506594315400999E+00, \ 0.03602598513176459E+00, \ 0.003776613374642883E+00, \ 0.00001799347809370518E+00, \ 5.776373974707445E-10, \ 0.9221370088957891E+00, \ 0.1799066579520922E+00, \ 0.004531936049571459E+00, \ 0.00001979282590307570E+00, \ 3.486992497366216E-23, \ 3.227479531135262E+00, \ 0.3897977588961997E+00, \ 0.006495775004385758E+00, \ 0.00002393132586462789E+00, \ 3.627839645299048E-23, \ 0.7311451879202114E+00, \ 0.1567475478393932E+00, \ 0.004257389528177461E+00, \ 0.00001915541065869563E+00, \ 3.463337593569306E-23, \ 4.731184839919541E+00, \ 0.4976876225514758E+00, \ 0.007300864610941163E+00, \ 0.00002546421294106458E+00, \ 3.675275677913656E-23 ) ) nu_vec = np.array ( ( \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 1.50E+00, \ 1.50E+00, \ 1.50E+00, \ 1.50E+00, \ 1.50E+00, \ 2.50E+00, \ 2.50E+00, \ 2.50E+00, \ 2.50E+00, \ 2.50E+00, \ 1.25E+00, \ 1.25E+00, \ 1.25E+00, \ 1.25E+00, \ 1.25E+00, \ 2.75E+00, \ 2.75E+00, \ 2.75E+00, \ 2.75E+00, \ 2.75E+00 )) x_vec = np.array ( ( \ 0.2E+00, \ 1.0E+00, \ 2.0E+00, \ 2.5E+00, \ 3.0E+00, \ 5.0E+00, \ 10.0E+00, \ 20.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 nu = 0 x = 0.0 fx = 0.0 else: nu = nu_vec[n_data] x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, nu, x, fx def bessel_kx_values_test ( ): #*****************************************************************************80 # ## BESSEL_KX_VALUES_TEST demonstrates the use of BESSEL_KX_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 January 2015 # # Author: # # John Burkardt # print '' print 'BESSEL_KX_VALUES_TEST:' print ' BESSEL_KX_VALUES stores values of the Bessel K function. of real order NU.' print '' print ' NU X K(NU,X)' print '' n_data = 0 while ( True ): n_data, nu, x, fx = bessel_kx_values ( n_data ) if ( n_data == 0 ): break print ' %12f %12f %24.16g' % ( nu, x, fx ) print '' print 'BESSEL_KX_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bessel_kx_values_test ( ) timestamp ( )