#!/usr/bin/env python # def bessel_y0_int_values ( n_data ): #*****************************************************************************80 # ## BESSEL_Y0_INT_VALUES returns some values of the Bessel Y0 integral. # # Discussion: # # The function is defined by: # # Y0_INT(x) = Integral ( 0 <= t <= x ) Y0(t) dt # # The data was reported by McLeod. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 January 2015 # # Author: # # John Burkardt # # Reference: # # Allan McLeod, # Algorithm 757, MISCFUN: A software package to compute uncommon # special functions, # ACM Transactions on Mathematical Software, # Volume 22, Number 3, September 1996, pages 288-301. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 20 fx_vec = np.array ( ( \ -0.91442642860172110926E-02, \ -0.29682047390397591290E-01, \ -0.25391431276585388961E+00, \ -0.56179545591464028187E+00, \ -0.63706937660742309754E+00, \ -0.28219285008510084123E+00, \ 0.38366964785312561103E+00, \ -0.12595061285798929390E+00, \ 0.24129031832266684828E+00, \ 0.17138069757627037938E+00, \ 0.18958142627134083732E+00, \ 0.17203846136449706946E+00, \ -0.16821597677215029611E+00, \ -0.93607927351428988679E-01, \ 0.88229711948036648408E-01, \ -0.89324662736274161841E-02, \ -0.54814071000063488284E-01, \ -0.94958246003466381588E-01, \ -0.19598064853404969850E-01, \ -0.83084772357154773468E-02 ) ) x_vec = np.array ( ( \ 0.0019531250E+00, \ 0.0078125000E+00, \ 0.1250000000E+00, \ 0.5000000000E+00, \ 1.0000000000E+00, \ 2.0000000000E+00, \ 4.0000000000E+00, \ 6.0000000000E+00, \ 10.0000000000E+00, \ 16.0000000000E+00, \ 16.2500000000E+00, \ 17.0000000000E+00, \ 20.0000000000E+00, \ 25.0000000000E+00, \ 30.0000000000E+00, \ 40.0000000000E+00, \ 50.0000000000E+00, \ 70.0000000000E+00, \ 100.0000000000E+00, \ 125.0000000000E+00 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 fx = 0.0 else: x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, x, fx def bessel_y0_int_values_test ( ): #*****************************************************************************80 # ## BESSEL_Y0_INT_VALUES_TEST demonstrates the use of BESSEL_Y0_INT_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 January 2015 # # Author: # # John Burkardt # print '' print 'BESSEL_Y0_INT_VALUES_TEST:' print ' BESSEL_Y0_INT_VALUES stores values of the Bessel Y integral. of order 0.' print '' print ' X Int_Y(0,X)' print '' n_data = 0 while ( True ): n_data, x, fx = bessel_y0_int_values ( n_data ) if ( n_data == 0 ): break print ' %12f %24.16g' % ( x, fx ) print '' print 'BESSEL_Y0_INT_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bessel_y0_int_values_test ( ) timestamp ( )