#!/usr/bin/env python # def bessel_y1_spherical_values ( n_data ): #*****************************************************************************80 # ## BESSEL_Y1_SPHERICAL_VALUES returns some values of the Spherical Bessel function y1. # # Discussion: # # In Mathematica, the function can be evaluated by: # # Sqrt[Pi/(2*x)] * BesselY[3/2,x] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 13 January 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz, Irene Stegun, # Handbook of Mathematical Functions, # National Bureau of Standards, 1964, # LC: QA47.A34, # ISBN: 0-486-61272-4. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 21 fx_vec = np.array ( ( \ -0.1004987506942709E+03, \ -0.2549501110000635E+02, \ -0.6730177068289658E+01, \ -0.3233669719296388E+01, \ -0.1985299346979349E+01, \ -0.1381773290676036E+01, \ -0.1028336567803712E+01, \ -0.7906105943286149E+00, \ -0.6133274385019998E+00, \ -0.4709023582986618E+00, \ -0.3506120042760553E+00, \ -0.2459072254437506E+00, \ -0.1534232496148467E+00, \ -0.7151106706610352E-01, \ 0.5427959479750482E-03, \ 0.6295916360231598E-01, \ 0.1157316440198251E+00, \ 0.1587922092967723E+00, \ 0.1921166676076864E+00, \ 0.2157913917934037E+00, \ 0.2300533501309578E+00 ) ) x_vec = np.array ( ( \ 0.1E+00, \ 0.2E+00, \ 0.4E+00, \ 0.6E+00, \ 0.8E+00, \ 1.0E+00, \ 1.2E+00, \ 1.4E+00, \ 1.6E+00, \ 1.8E+00, \ 2.0E+00, \ 2.2E+00, \ 2.4E+00, \ 2.6E+00, \ 2.8E+00, \ 3.0E+00, \ 3.2E+00, \ 3.4E+00, \ 3.6E+00, \ 3.8E+00, \ 4.0E+00 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 fx = 0.0 else: x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, x, fx def bessel_y1_spherical_values_test ( ): #*****************************************************************************80 # ## BESSEL_Y1_SPHERICAL_VALUES_TEST tests BESSEL_Y1_SPHERICAL_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 13 January 2015 # # Author: # # John Burkardt # print '' print 'BESSEL_Y1_SPHERICAL_VALUES_TEST:' print ' BESSEL_Y1_SPHERICAL_VALUES stores values of the spherical Bessel Y function of order 1.' print '' print ' X Spherical Y(1,X)' print '' n_data = 0 while ( True ): n_data, x, fx = bessel_y1_spherical_values ( n_data ) if ( n_data == 0 ): break print ' %12f %24.16g' % ( x, fx ) print '' print 'BESSEL_Y1_SPHERICAL_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bessel_y1_spherical_values_test ( ) timestamp ( )