#!/usr/bin/env python # def bessel_yn_values ( n_data ): #*****************************************************************************80 # ## BESSEL_YN_VALUES returns some values of the Kn Bessel function. # # Discussion: # # In Mathematica, the function can be evaluated by: # # BesselY[n,x] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 January 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer NU, the order of the function. # # Output, real X, the argument of the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 20 fx_vec = np.array ( ( \ -0.1650682606816254E+01, \ -0.6174081041906827E+00, \ 0.3676628826055245E+00, \ -0.5868082442208615E-02, \ 0.9579316872759649E-01, \ -0.2604058666258122E+03, \ -0.9935989128481975E+01, \ -0.4536948224911019E+00, \ 0.1354030476893623E+00, \ -0.7854841391308165E-01, \ -0.1216180142786892E+09, \ -0.1291845422080393E+06, \ -0.2512911009561010E+02, \ -0.3598141521834027E+00, \ 0.5723897182053514E-02, \ -0.4113970314835505E+23, \ -0.4081651388998367E+17, \ -0.5933965296914321E+09, \ -0.1597483848269626E+04, \ 0.1644263394811578E-01 ) ) nu_vec = np.array ( ( \ 2, 2, 2, 2, \ 2, 5, 5, 5, \ 5, 5, 10, 10, \ 10, 10, 10, 20, \ 20, 20, 20, 20 )) x_vec = np.array ( ( \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 nu = 0 x = 0.0 fx = 0.0 else: nu = nu_vec[n_data] x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, nu, x, fx def bessel_yn_values_test ( ): #*****************************************************************************80 # ## BESSEL_YN_VALUES_TEST demonstrates the use of BESSEL_YN_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 January 2015 # # Author: # # John Burkardt # print '' print 'BESSEL_YN_VALUES_TEST:' print ' BESSEL_YN_VALUES stores values of the Bessel Y function. of order NU.' print '' print ' NU X Y(NU,X)' print '' n_data = 0 while ( True ): n_data, nu, x, fx = bessel_yn_values ( n_data ) if ( n_data == 0 ): break print ' %4d %12f %24.16g' % ( nu, x, fx ) print '' print 'BESSEL_YN_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bessel_yn_values_test ( ) timestamp ( )