#!/usr/bin/env python # def bessel_yx_values ( n_data ): #*****************************************************************************80 # ## BESSEL_YX_VALUES returns some values of the Yx Bessel function. # # Discussion: # # This set of data considers the less common case in which the # index of the Bessel function Kn is actually not an integer. # We may suggest this case by occasionally replacing the symbol # "Yn" by "Yx". # # In Mathematica, the function can be evaluated by: # # BesselY[n,x] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 January 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz, Irene Stegun, # Handbook of Mathematical Functions, # National Bureau of Standards, 1964, # ISBN: 0-486-61272-4, # LC: QA47.A34. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Cambridge University Press, 1999, # ISBN: 0-521-64314-7, # LC: QA76.95.W65. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real NU, the order of the function. # # Output, real X, the argument of the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 28 fx_vec = np.array ( ( \ -1.748560416961876E+00, \ -0.4310988680183761E+00, \ 0.2347857104062485E+00, \ 0.4042783022390569E+00, \ 0.4560488207946332E+00, \ -0.1012177091851084E+00, \ 0.2117088663313982E+00, \ -0.07280690478506185E+00, \ -1.102495575160179E+00, \ -0.3956232813587035E+00, \ 0.3219244429611401E+00, \ 0.1584346223881903E+00, \ 0.02742813676191382E+00, \ -2.876387857462161E+00, \ -0.8282206324443037E+00, \ 0.2943723749617925E+00, \ -0.1641784796149411E+00, \ 0.1105304445562544E+00, \ -0.9319659251969881E+00, \ -0.2609445010948933E+00, \ 0.2492796362185881E+00, \ 0.2174410301416733E+00, \ -0.01578576650557229E+00, \ -4.023453301501028E+00, \ -0.9588998694752389E+00, \ 0.2264260361047367E+00, \ -0.2193617736566760E+00, \ 0.09413988344515077E+00 ) ) nu_vec = np.array ( ( \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 1.50E+00, \ 1.50E+00, \ 1.50E+00, \ 1.50E+00, \ 1.50E+00, \ 2.50E+00, \ 2.50E+00, \ 2.50E+00, \ 2.50E+00, \ 2.50E+00, \ 1.25E+00, \ 1.25E+00, \ 1.25E+00, \ 1.25E+00, \ 1.25E+00, \ 2.75E+00, \ 2.75E+00, \ 2.75E+00, \ 2.75E+00, \ 2.75E+00 )) x_vec = np.array ( ( \ 0.2E+00, \ 1.0E+00, \ 2.0E+00, \ 2.5E+00, \ 3.0E+00, \ 5.0E+00, \ 10.0E+00, \ 20.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00, \ 1.0E+00, \ 2.0E+00, \ 5.0E+00, \ 10.0E+00, \ 50.0E+00 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 nu = 0 x = 0.0 fx = 0.0 else: nu = nu_vec[n_data] x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, nu, x, fx def bessel_yx_values_test ( ): #*****************************************************************************80 # ## BESSEL_YX_VALUES_TEST demonstrates the use of BESSEL_YX_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 January 2015 # # Author: # # John Burkardt # print '' print 'BESSEL_YX_VALUES_TEST:' print ' BESSEL_YX_VALUES stores values of the Bessel Y function. of real order NU.' print '' print ' NU X Y(NU,X)' print '' n_data = 0 while ( True ): n_data, nu, x, fx = bessel_yx_values ( n_data ) if ( n_data == 0 ): break print ' %12f %12f %24.16g' % ( nu, x, fx ) print '' print 'BESSEL_YX_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) bessel_yx_values_test ( ) timestamp ( )