#!/usr/bin/env python # def beta_log_values ( n_data ): #*****************************************************************************80 # ## BETA_LOG_VALUES returns some values of the logarithm of the Beta function. # # Discussion: # # In Mathematica, the function can be evaluated by: # # Log[Beta[x]] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 January 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, Y, the arguments of the function. # # Output, real FXY, the value of the function. # import numpy as np n_max = 17 f_vec = np.array ( ( \ 0.1609437912434100E+01, \ 0.9162907318741551E+00, \ 0.5108256237659907E+00, \ 0.2231435513142098E+00, \ 0.1609437912434100E+01, \ 0.9162907318741551E+00, \ 0.0000000000000000E+00, \ -0.1791759469228055E+01, \ -0.3401197381662155E+01, \ -0.4941642422609304E+01, \ -0.6445719819385578E+01, \ -0.3737669618283368E+01, \ -0.5123963979403259E+01, \ -0.6222576268071369E+01, \ -0.7138866999945524E+01, \ -0.7927324360309794E+01, \ -0.9393661429103221E+01 ) ) x_vec = np.array ( ( \ 0.2E+00, \ 0.4E+00, \ 0.6E+00, \ 0.8E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 2.0E+00, \ 3.0E+00, \ 4.0E+00, \ 5.0E+00, \ 6.0E+00, \ 6.0E+00, \ 6.0E+00, \ 6.0E+00, \ 6.0E+00, \ 7.0E+00 ) ) y_vec = np.array ( ( \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 0.2E+00, \ 0.4E+00, \ 1.0E+00, \ 2.0E+00, \ 3.0E+00, \ 4.0E+00, \ 5.0E+00, \ 2.0E+00, \ 3.0E+00, \ 4.0E+00, \ 5.0E+00, \ 6.0E+00, \ 7.0E+00 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 y = 0.0 f = 0.0 else: x = x_vec[n_data] y = y_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, x, y, f def beta_log_values_test ( ): #*****************************************************************************80 # ## BETA_LOG_VALUES_TEST demonstrates the use of BETA_LOG_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 January 2015 # # Author: # # John Burkardt # print '' print 'BETA_LOG_VALUES_TEST:' print ' BETA_LOG_VALUES stores values of the Log(BETA) function.' print '' print ' X Y Log(BETA(X,Y))' print '' n_data = 0 while ( True ): n_data, x, y, f = beta_log_values ( n_data ) if ( n_data == 0 ): break print ' %12f %12f %24.16g' % ( x, y, f ) print '' print 'BETA_LOG_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) beta_log_values_test ( ) timestamp ( )