#!/usr/bin/env python # def beta_noncentral_cdf_values ( n_data ): #*****************************************************************************80 # ## BETA_NONCENTRAL_CDF_VALUES returns some values of the noncentral Beta CDF. # # Discussion: # # The values presented here are taken from the reference, where they # were given to a limited number of decimal places. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 January 2015 # # Author: # # John Burkardt # # Reference: # # R Chattamvelli, R Shanmugam, # Algorithm AS 310: # Computing the Non-central Beta Distribution Function, # Applied Statistics, # Volume 46, Number 1, 1997, pages 146-156. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 # before the first call. On each call, the routine increments N_DATA by 1, # and returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, rea A, B, the shape parameters. # # Output, real LAMDA, the noncentrality parameter. # It is necessary to misspell LAMBDA since Python uses it as a keyword. # # Output, real X, the argument of the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 25 a_vec = np.array ( ( \ 5.0, \ 5.0, \ 5.0, \ 10.0, \ 10.0, \ 10.0, \ 20.0, \ 20.0, \ 20.0, \ 10.0, \ 10.0, \ 15.0, \ 20.0, \ 20.0, \ 20.0, \ 30.0, \ 30.0, \ 10.0, \ 10.0, \ 10.0, \ 15.0, \ 10.0, \ 12.0, \ 30.0, \ 35.0 )) b_vec = np.array ( ( \ 5.0, \ 5.0, \ 5.0, \ 10.0, \ 10.0, \ 10.0, \ 20.0, \ 20.0, \ 20.0, \ 20.0, \ 10.0, \ 5.0, \ 10.0, \ 30.0, \ 50.0, \ 20.0, \ 40.0, \ 5.0, \ 10.0, \ 30.0, \ 20.0, \ 5.0, \ 17.0, \ 30.0, \ 30.0 )) f_vec = np.array ( ( \ 0.4563021, \ 0.1041337, \ 0.6022353, \ 0.9187770, \ 0.6008106, \ 0.0902850, \ 0.9998655, \ 0.9925997, \ 0.9641112, \ 0.9376626573, \ 0.7306817858, \ 0.1604256918, \ 0.1867485313, \ 0.6559386874, \ 0.9796881486, \ 0.1162386423, \ 0.9930430054, \ 0.0506899273, \ 0.1030959706, \ 0.9978417832, \ 0.2555552369, \ 0.0668307064, \ 0.0113601067, \ 0.7813366615, \ 0.8867126477 ) ) lamda_vec = np.array ( ( \ 54.0, \ 140.0, \ 170.0, \ 54.0, \ 140.0, \ 250.0, \ 54.0, \ 140.0, \ 250.0, \ 150.0, \ 120.0, \ 80.0, \ 110.0, \ 65.0, \ 130.0, \ 80.0, \ 130.0, \ 20.0, \ 54.0, \ 80.0, \ 120.0, \ 55.0, \ 64.0, \ 140.0, \ 20.0 )) x_vec = np.array ( ( \ 0.8640, \ 0.9000, \ 0.9560, \ 0.8686, \ 0.9000, \ 0.9000, \ 0.8787, \ 0.9000, \ 0.9220, \ 0.868, \ 0.900, \ 0.880, \ 0.850, \ 0.660, \ 0.720, \ 0.720, \ 0.800, \ 0.644, \ 0.700, \ 0.780, \ 0.760, \ 0.795, \ 0.560, \ 0.800, \ 0.670 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 a = 0.0 b = 0.0 lamda = 0.0 x = 0.0 f = 0.0 else: a = a_vec[n_data] b = b_vec[n_data] lamda = lamda_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, a, b, lamda, x, f def beta_noncentral_cdf_values_test ( ): #*****************************************************************************80 # ## BETA_NONCENTRAL_CDF_VALUES_TEST tests BETA_NONCENTRAL_CDF_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 January 2015 # # Author: # # John Burkardt # print '' print 'BETA_NONCENTRAL_CDF_VALUES_TEST:' print ' BETA_NONCENTRAL_CDF_VALUES stores values of the noncentral BETA CDF.' print '' print ' A B LAMDA X BETA_NONCENTRAL_CDF(A,B,LAMDA,X)' print '' n_data = 0 while ( True ): n_data, a, b, lamda, x, f = beta_noncentral_cdf_values ( n_data ) if ( n_data == 0 ): break print ' %12f %12f %12f %12f %24.16g' % ( a, b, lamda, x, f ) print '' print 'BETA_NONCENTRAL_CDF_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) beta_noncentral_cdf_values_test ( ) timestamp ( )