#!/usr/bin/env python # def binomial_cdf_values ( n_data ): #*****************************************************************************80 # ## BINOMIAL_CDF_VALUES returns some values of the binomial CDF. # # Discussion: # # CDF(X)(A,B) is the probability of at most X successes in A trials, # given that the probability of success on a single trial is B. # # In Mathematica, the function can be evaluated by: # # Needs["Statistics`DiscreteDistributions`] # dist = BinomialDistribution [ n, p ] # CDF [ dist, x ] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 January 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Daniel Zwillinger, # CRC Standard Mathematical Tables and Formulae, # 30th Edition, CRC Press, 1996, pages 651-652. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer A, a parameter of the function. # # Output, real B, a parameter of the function. # # Output, integer X, the argument of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 17 a_vec = np.array ( ( \ 2, 2, 2, 2, \ 2, 4, 4, 4, \ 4, 10, 10, 10, \ 10, 10, 10, 10, \ 10 )) b_vec = np.array ( ( \ 0.05E+00, \ 0.05E+00, \ 0.05E+00, \ 0.50E+00, \ 0.50E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.05E+00, \ 0.10E+00, \ 0.15E+00, \ 0.20E+00, \ 0.25E+00, \ 0.30E+00, \ 0.40E+00, \ 0.50E+00 )) f_vec = np.array ( ( \ 0.9025000000000000E+00, \ 0.9975000000000000E+00, \ 0.1000000000000000E+01, \ 0.2500000000000000E+00, \ 0.7500000000000000E+00, \ 0.3164062500000000E+00, \ 0.7382812500000000E+00, \ 0.9492187500000000E+00, \ 0.9960937500000000E+00, \ 0.9999363101685547E+00, \ 0.9983650626000000E+00, \ 0.9901259090013672E+00, \ 0.9672065024000000E+00, \ 0.9218730926513672E+00, \ 0.8497316674000000E+00, \ 0.6331032576000000E+00, \ 0.3769531250000000E+00 ) ) x_vec = np.array ( ( \ 0, 1, 2, 0, \ 1, 0, 1, 2, \ 3, 4, 4, 4, \ 4, 4, 4, 4, \ 4 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 a = 0.0 b = 0.0 x = 0.0 f = 0.0 else: a = a_vec[n_data] b = b_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, a, b, x, f def binomial_cdf_values_test ( ): #*****************************************************************************80 # ## BINOMIAL_CDF_VALUES_TEST demonstrates the use of BINOMIAL_CDF_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 January 2015 # # Author: # # John Burkardt # print '' print 'BINOMIAL_CDF_VALUES_TEST:' print ' BINOMIAL_CDF_VALUES stores values of the BINOMIAL CDF.' print '' print ' A B X BINOMIAL_CDF(A,B,X)' print '' n_data = 0 while ( True ): n_data, a, b, x, f = binomial_cdf_values ( n_data ) if ( n_data == 0 ): break print ' %12f %12f %12d %24.16g' % ( a, b, x, f ) print '' print 'BINOMIAL_CDF_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) binomial_cdf_values_test ( ) timestamp ( )