#!/usr/bin/env python # def cbrt_values ( n_data ): #*****************************************************************************80 # ## CBRT_VALUES returns some values of the cube root function. # # Discussion: # # CBRT(X) = real number Y such that Y * Y * Y = X. # # In Mathematica, the function can be evaluated by: # # Sign[x] * ( Abs[x] )^(1/3) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 January 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz, Irene Stegun, # Handbook of Mathematical Functions, # National Bureau of Standards, 1964, # ISBN: 0-486-61272-4, # LC: QA47.A34. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Cambridge University Press, 1999, # ISBN: 0-521-64314-7, # LC: QA76.95.W65. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output real FX, the value of the function. # import numpy as np n_max = 14 fx_vec = np.array ( ( \ 0.0000000000000000E+00, \ -0.0020082988563383484484E+00, \ 0.44814047465571647087E+00, \ -0.46415888336127788924E+00, \ 0.73680629972807732116E+00, \ -1.0000000000000000000E+00, \ 1.2599210498948731648E+00, \ -1.4422495703074083823E+00, \ 1.4645918875615232630E+00, \ -2.6684016487219448673E+00, \ 3.0723168256858472933E+00, \ -4.1408177494228532500E+00, \ 4.5947008922070398061E+00, \ -497.93385921817447440E+00 ) ) x_vec = np.array ( ( \ 0.0000000000000000E+00, \ -0.8100000073710001E-08, \ 0.9000000000000000E-01, \ -0.1000000000000000E+00, \ 0.4000000000000000E+00, \ -0.1000000000000000E+01, \ 0.2000000000000000E+01, \ -0.3000000000000000E+01, \ 0.3141592653589793E+01, \ -0.1900000000000000E+02, \ 0.2900000000000000E+02, \ -0.7100000000000000E+02, \ 0.9700000000000000E+02, \ -0.1234567890000000E+09 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 fx = 0.0 else: x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, x, fx def cbrt_values_test ( ): #*****************************************************************************80 # ## CBRT_VALUES_TEST demonstrates the use of CBRT_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 January 2015 # # Author: # # John Burkardt # print '' print 'CBRT_VALUES_TEST:' print ' CBRT_VALUES stores values of the cube root function.' print '' print ' X CBRT(X)' print '' n_data = 0 while ( True ): n_data, x, fx = cbrt_values ( n_data ) if ( n_data == 0 ): break print ' %12f %24.16f' % ( x, fx ) print '' print 'CBRT_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) cbrt_values_test ( ) timestamp ( )