#!/usr/bin/env python # def cheby_v_poly_values ( n_data ): #*****************************************************************************80 # ## CHEBY_V_POLY_VALUES returns values of Chebyshev polynomials V(n,x). # # Discussion: # # In Mathematica, the function can be evaluated by: # # u = Sqrt[(x+1)/2], # ChebyshevT[2*n+1,u] / u # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 21 January 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, the order of the function. # # Output, real X, the point where the function is evaluated. # # Output, real FX, the value of the function. # import numpy as np n_max = 13 fx_vec = np.array ( ( \ 1.0000000000000000E+00, \ 0.6000000000000000E+00, \ -0.0400000000000000E+00, \ -0.6640000000000000E+00, \ -1.0224000000000000E+00, \ -0.9718400000000000E+00, \ -0.5325440000000000E+00, \ 0.1197696000000000E+00, \ 0.7241753600000000E+00, \ 1.0389109760000000E+00, \ 0.9380822016000000E+00, \ 0.4620205465600000E+00, \ -0.1988493271040000E+00 ) ) n_vec = np.array ( ( \ 0, 1, 2, \ 3, 4, 5, \ 6, 7, 8, \ 9, 10, 11, \ 12 )) x_vec = np.array ( ( \ 0.8E+00, \ 0.8E+00, \ 0.8E+00, \ 0.8E+00, \ 0.8E+00, \ 0.8E+00, \ 0.8E+00, \ 0.8E+00, \ 0.8E+00, \ 0.8E+00, \ 0.8E+00, \ 0.8E+00, \ 0.8E+00 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 x = 0.0 fx = 0.0 else: n = n_vec[n_data] x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, n, x, fx def cheby_v_poly_values_test ( ): #*****************************************************************************80 # ## CHEBY_V_POLY_VALUES_TEST demonstrates the use of CHEBY_V_POLY_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 21 January 2015 # # Author: # # John Burkardt # print '' print 'CHEBY_V_POLY_VALUES_TEST:' print ' CHEBY_V_POLY_VALUES stores values of the Chebyshev V polynomials.' print '' print ' N X FX' print '' n_data = 0 while ( True ): n_data, n, x, fx = cheby_v_poly_values ( n_data ) if ( n_data == 0 ): break print ' %6d %12f %24.16g' % ( n, x, fx ) print '' print 'CHEBY_V_POLY_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) cheby_v_poly_values_test ( ) timestamp ( )