#!/usr/bin/env python # def chi_square_noncentral_cdf_values ( n_data ): #*****************************************************************************80 # ## CHI_SQUARE_NONCENTRAL_CDF_VALUES returns values of the noncentral chi CDF. # # Discussion: # # In Mathematica, the function can be evaluated by: # # Needs["Statistics`ContinuousDistributions`"] # dist = NoncentralChiSquareDistribution [ df, lambda ] # CDF [ dist, x ] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 January 2015 # # Author: # # John Burkardt # # Reference: # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer DF, the number of degrees of freedom. # # Output, real LAMBDA, the noncentrality parameter. # # Output, real X, the argument of the function. # # Output, real F, the noncentral chi CDF. # import numpy as np n_max = 28 df_vec = np.array ( ( \ 1, 2, 3, \ 1, 2, 3, \ 1, 2, 3, \ 1, 2, 3, \ 60, 80, 100, \ 1, 2, 3, \ 10, 10, 10, \ 10, 10, 10, \ 10, 10, 10, \ 8 ) ) f_vec = np.array ( ( \ 0.8399444269398261E+00, \ 0.6959060300435139E+00, \ 0.5350879697078847E+00, \ 0.7647841496310313E+00, \ 0.6206436532195436E+00, \ 0.4691667375373180E+00, \ 0.3070884345937569E+00, \ 0.2203818092990903E+00, \ 0.1500251895581519E+00, \ 0.3071163194335791E-02, \ 0.1763982670131894E-02, \ 0.9816792594625022E-03, \ 0.1651753140866208E-01, \ 0.2023419573950451E-03, \ 0.4984476352854074E-06, \ 0.1513252400654827E-01, \ 0.2090414910614367E-02, \ 0.2465021206048452E-03, \ 0.2636835050342939E-01, \ 0.1857983220079215E-01, \ 0.1305736595486640E-01, \ 0.5838039534819351E-01, \ 0.4249784402463712E-01, \ 0.3082137716021596E-01, \ 0.1057878223400849E+00, \ 0.7940842984598509E-01, \ 0.5932010895599639E-01, \ 0.2110395656918684E+00 ) ) lam_vec = np.array ( ( \ 0.5E+00, \ 0.5E+00, \ 0.5E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 5.0E+00, \ 5.0E+00, \ 5.0E+00, \ 20.0E+00, \ 20.0E+00, \ 20.0E+00, \ 30.0E+00, \ 30.0E+00, \ 30.0E+00, \ 5.0E+00, \ 5.0E+00, \ 5.0E+00, \ 2.0E+00, \ 3.0E+00, \ 4.0E+00, \ 2.0E+00, \ 3.0E+00, \ 4.0E+00, \ 2.0E+00, \ 3.0E+00, \ 4.0E+00, \ 0.5E+00 ) ) x_vec = np.array ( ( \ 3.000E+00, \ 3.000E+00, \ 3.000E+00, \ 3.000E+00, \ 3.000E+00, \ 3.000E+00, \ 3.000E+00, \ 3.000E+00, \ 3.000E+00, \ 3.000E+00, \ 3.000E+00, \ 3.000E+00, \ 60.000E+00, \ 60.000E+00, \ 60.000E+00, \ 0.050E+00, \ 0.050E+00, \ 0.050E+00, \ 4.000E+00, \ 4.000E+00, \ 4.000E+00, \ 5.000E+00, \ 5.000E+00, \ 5.000E+00, \ 6.000E+00, \ 6.000E+00, \ 6.000E+00, \ 5.000E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 df = 0 lam = 0.0 x = 0.0 f = 0.0 else: df = df_vec[n_data] lam = lam_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, df, lam, x, f def chi_square_noncentral_cdf_values_test ( ): #*****************************************************************************80 # ## CHI_SQUARE_NONCENTRAL_CDF_VALUES_TEST tests CHI_SQUARE_NONCENTRAL_CDF_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 January 2015 # # Author: # # John Burkardt # print '' print 'CHI_SQUARE_NONCENTRAL_CDF_VALUES_TEST:' print ' CHI_SQUARE_NONCENTRAL_CDF_VALUES stores values of the noncentral Chi Square CDF.' print '' print ' DF LAM X CHI_SQUARE_NONCENTRAL_CDF' print '' n_data = 0 while ( True ): n_data, df, lam, x, f = chi_square_noncentral_cdf_values ( n_data ) if ( n_data == 0 ): break print ' %12d %12f %12f %24.16g' % ( df, lam, x, f ) print '' print 'CHI_SQUARE_NONCENTRAL_CDF_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) chi_square_noncentral_cdf_values_test ( ) timestamp ( )