#!/usr/bin/env python # def dawson_values ( n_data ): #*****************************************************************************80 # ## DAWSON_VALUES returns some values of Dawson's integral. # # Discussion: # # The definition of Dawson's integral is # # D(X) = exp ( -X * X ) * Integral ( 0 <= Y <= X ) exp ( Y * Y ) dY # # Dawson's integral has a maximum at roughly # # X = 0.9241388730 # # In Mathematica, the function can be evaluated by: # # Sqrt[Pi] * Exp[-x^2] * I * Erf[I*x] / 2 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 03 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Eric Weisstein, # CRC Concise Encyclopedia of Mathematics, # CRC Press, 1998. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 21 fx_vec = np.array ( ( \ 0.0000000000000000E+00, \ 0.9933599239785286E-01, \ 0.1947510333680280E+00, \ 0.2826316650213119E+00, \ 0.3599434819348881E+00, \ 0.4244363835020223E+00, \ 0.4747632036629779E+00, \ 0.5105040575592318E+00, \ 0.5321017070563654E+00, \ 0.5407243187262987E+00, \ 0.5380795069127684E+00, \ 0.5262066799705525E+00, \ 0.5072734964077396E+00, \ 0.4833975173848241E+00, \ 0.4565072375268973E+00, \ 0.4282490710853986E+00, \ 0.3999398943230814E+00, \ 0.3725593489740788E+00, \ 0.3467727691148722E+00, \ 0.3229743193228178E+00, \ 0.3013403889237920E+00 )) x_vec = np.array ( ( \ 0.0E+00, \ 0.1E+00, \ 0.2E+00, \ 0.3E+00, \ 0.4E+00, \ 0.5E+00, \ 0.6E+00, \ 0.7E+00, \ 0.8E+00, \ 0.9E+00, \ 1.0E+00, \ 1.1E+00, \ 1.2E+00, \ 1.3E+00, \ 1.4E+00, \ 1.5E+00, \ 1.6E+00, \ 1.7E+00, \ 1.8E+00, \ 1.9E+00, \ 2.0E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 fx = 0.0 else: x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, x, fx def dawson_values_test ( ): #*****************************************************************************80 # ## DAWSON_VALUES_TEST demonstrates the use of DAWSON_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 03 February 2015 # # Author: # # John Burkardt # print '' print 'DAWSON_VALUES_TEST:' print ' DAWSON_VALUES stores values of the Dawson integral function.' print '' print ' X F(X)' print '' n_data = 0 while ( True ): n_data, x, fx = dawson_values ( n_data ) if ( n_data == 0 ): break print ' %12f %24.16f' % ( x, fx ) print '' print 'DAWSON_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) dawson_values_test ( ) timestamp ( )