#!/usr/bin/env python # def dedekind_sum_values ( n_data ): #*****************************************************************************80 # ## DEDEKIND_SUM_VALUES returns some values of the Dedekind sum. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 03 February 2015 # # Author: # # John Burkardt # # Reference: # # Hans Rademacher, Emil Grosswald, # Dedekind Sums, # Mathematics Association of America, 1972, # LC: QA241.R2. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer P, Q, the arguments of the function. # # Output, integer N, D, the numerator and denominator of the function value. # import numpy as np n_max = 95 p_vec = np.array ( ( \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, \ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, \ 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, \ 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, \ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, \ 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, \ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, \ 7, 7, 7, 7, 7 \ )) q_vec = np.array ( ( \ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \ 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, \ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, \ 1, 2, 4, 5, 7, 8, 10, 11, 13, 14, \ 16, 17, 19, 20, 1, 3, 5, 7, 9, 11, \ 13, 15, 17, 19, 1, 2, 3, 4, 6, 7, \ 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, \ 1, 5, 7, 11, 13, 17, 19, 1, 2, 3, \ 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, \ 16, 17, 18, 19, 20 \ )) n_vec = np.array ( ( \ 0, 0, 1, 1, 1, 5, 5, 7, 14, 3, \ 15, 55, 11, 13, 91, 35, 20, 34, 51, 57, \ 0, -1, 0, 1, 4, 5, 4, 7, 8, 21, \ 0, 0, -1, 0, -1, 1, 0, 3, 1, 3, \ 5, 5, 9, 3, 0, 1, -1, 1, -4, 3, \ -1, 19, 0, 11, 0, 0, -1, 1, -5, -1, \ -1, 4, -5, -1, 0, 3, -5, 1, 2, 11, \ 0, 1, -5, 5, -4, 5, -9, 0, 0, 1, \ -1, 0, 5, -7, -4, 0, -3, 1, 4, -7, \ -3, 1, -2, 3, 3 \ )) d_vec = np.array ( ( \ 1, 1, 18, 8, 5, 18, 14, 16, 27, 5, \ 22, 72, 13, 14, 90, 32, 17, 27, 38, 40, \ 1, 18, 1, 14, 27, 22, 13, 18, 17, 38, \ 1, 1, 8, 1, 14, 16, 1, 22, 13, 14, \ 32, 17, 38, 8, 1, 18, 5, 14, 27, 22, \ 13, 90, 1, 38, 1, 1, 18, 8, 18, 14, \ 16, 27, 22, 72, 1, 14, 32, 17, 27, 38, \ 1, 5, 14, 22, 13, 17, 38, 1, 1, 18, \ 8, 1, 18, 16, 27, 1, 22, 72, 13, 18, \ 32, 17, 27, 38, 8 \ )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 p = 0 q = 0 n = 0 d = 0 else: p = p_vec[n_data] q = q_vec[n_data] n = n_vec[n_data] d = d_vec[n_data] n_data = n_data + 1 return n_data, p, q, n, d def dedekind_sum_values_test ( ): #*****************************************************************************80 # ## DEDEKIND_SUM_VALUES_TEST demonstrates the use of DEDEKIND_SUM_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 03 February 2015 # # Author: # # John Burkardt # print '' print 'DEDEKIND_SUM_VALUES_TEST:' print ' DEDEKIND_SUM_VALUES returns values of the Dedekind sum ' print ' (N/D) = Dedekind_Sum ( P, Q ).' print '' print ' P Q N D' print '' n_data = 0 while ( True ): n_data, p, q, n, d = dedekind_sum_values ( n_data ) if ( n_data == 0 ): break print ' %6d %6d %6d %6d' % ( p, q, n, d ) print '' print 'DEDEKIND_SUM_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) dedekind_sum_values_test ( ) timestamp ( )