#!/usr/bin/env python # def dilogarithm_values ( n_data ): #*****************************************************************************80 # ## DILOGARITHM_VALUES returns some values of the dilogarithm function. # # Discussion: # # The dilogarithm is defined as # # Li_2(X) = - Integral ( 0 <= T <= X ) ln ( 1 - T ) / T dT # # The dilogarithm is also known as Spence's integral. # # In Abramowitz and Stegun form of the function is different, # and is equivalent to evaluated Li_2(1-X). # # The dilogarithm is the special case, with N = 2, of the # polylogarithm Li_N(X). # # In Mathematica, the function can be evaluated by: # # PolyLog[2,X] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 03 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 21 fx_vec = np.array ( ( 0.0000000000000000E+00, \ 0.5063929246449603E-01, \ 0.1026177910993911E+00, \ 0.1560350339454831E+00, \ 0.2110037754397048E+00, \ 0.2676526390827326E+00, \ 0.3261295100754761E+00, \ 0.3866059411605865E+00, \ 0.4492829744712817E+00, \ 0.5143989891542119E+00, \ 0.5822405264650125E+00, \ 0.6531576315069018E+00, \ 0.7275863077163334E+00, \ 0.8060826895177240E+00, \ 0.8893776242860387E+00, \ 0.9784693929303061E+00, \ 0.1074794600008248E+01, \ 0.1180581123830255E+01, \ 0.1299714723004959E+01, \ 0.1440633796970039E+01, \ 0.1644934066848226E+01 )) x_vec = np.array ( ( 0.00E+00, \ 0.05E+00, \ 0.10E+00, \ 0.15E+00, \ 0.20E+00, \ 0.25E+00, \ 0.30E+00, \ 0.35E+00, \ 0.40E+00, \ 0.45E+00, \ 0.50E+00, \ 0.55E+00, \ 0.60E+00, \ 0.65E+00, \ 0.70E+00, \ 0.75E+00, \ 0.80E+00, \ 0.85E+00, \ 0.90E+00, \ 0.95E+00, \ 0.10E+01 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 fx = 0.0 else: x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, x, fx def dilogarithm_values_test ( ): #*****************************************************************************80 # ## DILOGARITHM_VALUES_TEST demonstrates the use of DILOGARITHM_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 03 February 2015 # # Author: # # John Burkardt # print '' print 'DILOGARITHM_VALUES_TEST:' print ' DILOGARITHM_VALUES stores values of the dilogarithm function.' print '' print ' X F(X)' print '' n_data = 0 while ( True ): n_data, x, fx = dilogarithm_values ( n_data ) if ( n_data == 0 ): break print ' %12f %24.16f' % ( x, fx ) print '' print 'DILOGARITHM_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) dilogarithm_values_test ( ) timestamp ( )