#!/usr/bin/env python # def elliptic_em_values ( n_data ): #*****************************************************************************80 # ## ELLIPTIC_EM_VALUES returns values of the complete elliptic integral E(M). # # Discussion: # # This is one form of what is sometimes called the complete elliptic # integral of the second kind. # # The function is defined by the formula: # # E(M) = integral ( 0 <= T <= PI/2 ) # sqrt ( 1 - M * sin ( T )^2 ) dT # # In Mathematica, the function can be evaluated by: # # EllipticE[m] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 September 2004 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 21 fx_vec = np.array ( ( \ 1.570796326794897E+00, \ 1.550973351780472E+00, \ 1.530757636897763E+00, \ 1.510121832092819E+00, \ 1.489035058095853E+00, \ 1.467462209339427E+00, \ 1.445363064412665E+00, \ 1.422691133490879E+00, \ 1.399392138897432E+00, \ 1.375401971871116E+00, \ 1.350643881047676E+00, \ 1.325024497958230E+00, \ 1.298428035046913E+00, \ 1.270707479650149E+00, \ 1.241670567945823E+00, \ 1.211056027568459E+00, \ 1.178489924327839E+00, \ 1.143395791883166E+00, \ 1.104774732704073E+00, \ 1.060473727766278E+00, \ 1.000000000000000E+00 )) x_vec = np.array (( \ 0.00E+00, \ 0.05E+00, \ 0.10E+00, \ 0.15E+00, \ 0.20E+00, \ 0.25E+00, \ 0.30E+00, \ 0.35E+00, \ 0.40E+00, \ 0.45E+00, \ 0.50E+00, \ 0.55E+00, \ 0.60E+00, \ 0.65E+00, \ 0.70E+00, \ 0.75E+00, \ 0.80E+00, \ 0.85E+00, \ 0.90E+00, \ 0.95E+00, \ 1.00E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 fx = 0.0 else: x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, x, fx def elliptic_em_values_test ( ): #*****************************************************************************80 # ## ELLIPTIC_EM_VALUES_TEST demonstrates the use of ELLIPTIC_EM_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 03 February 2015 # # Author: # # John Burkardt # print '' print 'ELLIPTIC_EM_VALUES_TEST:' print ' ELLIPTIC_EM_VALUES stores values of the complete elliptic' print ' integral of the second kind, with parameter modulus M.' print '' print ' M EM(M)' print '' n_data = 0 while ( True ): n_data, x, fx = elliptic_em_values ( n_data ) if ( n_data == 0 ): break print ' %12f %24.16f' % ( x, fx ) print '' print 'ELLIPTIC_EM_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) elliptic_em_values_test ( ) timestamp ( )