#!/usr/bin/env python # def euler_number_values ( n_data ): #*****************************************************************************80 # ## EULER_NUMBER_VALUES returns some values of the Euler numbers. # # Discussion: # # In Mathematica, the function can be evaluated by: # # EulerE[n] # # These numbers rapidly get too big to store in an ordinary integer! # # The terms of odd index are 0. # # E(N) = -C(N,N-2) * E(N-2) - C(N,N-4) * E(N-4) - ... - C(N,0) * E(0). # # First terms: # # E0 = 1 # E1 = 0 # E2 = -1 # E3 = 0 # E4 = 5 # E5 = 0 # E6 = -61 # E7 = 0 # E8 = 1385 # E9 = 0 # E10 = -50521 # E11 = 0 # E12 = 2702765 # E13 = 0 # E14 = -199360981 # E15 = 0 # E16 = 19391512145 # E17 = 0 # E18 = -2404879675441 # E19 = 0 # E20 = 370371188237525 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, the order of the Euler number. # # Output, integer C, the value of the Euler number. # import numpy as np n_max = 8 c_vec = np.array ( ( 1, 0, -1, 5, -61, 1385, -50521, 2702765 )) n_vec = np.array ( ( 0, 1, 2, 4, 6, 8, 10, 12 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 c = 0 else: n = n_vec[n_data] c = c_vec[n_data] n_data = n_data + 1 return n_data, n, c def euler_number_values_test ( ): #*****************************************************************************80 # ## EULER_NUMBER_VALUES_TEST demonstrates the use of EULER_NUMBER_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 February 2015 # # Author: # # John Burkardt # print '' print 'EULER_NUMBER_VALUES_TEST:' print ' EULER_NUMBER_VALUES returns values of ' print ' the Euler numbers.' print '' print ' N Euler_Number(N)' print '' n_data = 0 while ( True ): n_data, n, c = euler_number_values ( n_data ) if ( n_data == 0 ): break print ' %4d %10d' % ( n, c ) print '' print 'EULER_NUMBER_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) euler_number_values_test ( ) timestamp ( )