#!/usr/bin/env python # def euler_poly_values ( n_data ): #*****************************************************************************80 # ## EULER_POLY_VALUES returns some values of the Euler polynomials. # # Discussion: # # In Mathematica, the function can be evaluated by: # # EulerE[n,x] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, the order of the Euler polynomial. # # Output, real X, the argument of the Euler polynomial. # # Output, real FX, the value of the Euler polynomial. # import numpy as np n_max = 27 fx_vec = np.array ( ( 0.100000000000E+01, \ -0.300000000000E+00, \ -0.160000000000E+00, \ 0.198000000000E+00, \ 0.185600000000E+00, \ -0.403680000000E+00, \ -0.560896000000E+00, \ 0.171878880000E+01, \ 0.318043136000E+01, \ -0.125394670080E+02, \ -0.289999384576E+02, \ -0.625000000000E-01, \ -0.174240000000E+00, \ -0.297680000000E+00, \ -0.404320000000E+00, \ -0.475260000000E+00, \ -0.500000000000E+00, \ -0.475240000000E+00, \ -0.403680000000E+00, \ -0.292820000000E+00, \ -0.153760000000E+00, \ 0.000000000000E+00, \ 0.153760000000E+00, \ 0.292820000000E+00, \ 0.403680000000E+00, \ 0.475240000000E+00, \ 0.500000000000E+00 )) n_vec = np.array ( ( 0, \ 1, \ 2, \ 3, \ 4, \ 5, \ 6, \ 7, \ 8, \ 9, \ 10, \ 5, \ 5, \ 5, \ 5, \ 5, \ 5, \ 5, \ 5, \ 5, \ 5, \ 5, \ 5, \ 5, \ 5, \ 5, \ 5 )) x_vec = np.array ( ( 0.2E+00, \ 0.2E+00, \ 0.2E+00, \ 0.2E+00, \ 0.2E+00, \ 0.2E+00, \ 0.2E+00, \ 0.2E+00, \ 0.2E+00, \ 0.2E+00, \ 0.2E+00, \ -0.5E+00, \ -0.4E+00, \ -0.3E+00, \ -0.2E+00, \ -0.1E+00, \ 0.0E+00, \ 0.1E+00, \ 0.2E+00, \ 0.3E+00, \ 0.4E+00, \ 0.5E+00, \ 0.6E+00, \ 0.7E+00, \ 0.8E+00, \ 0.9E+00, \ 1.0E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 x = 0.0 fx = 0.0 else: n = n_vec[n_data] x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, n, x, fx def euler_poly_values_test ( ): #*****************************************************************************80 # ## EULER_POLY_VALUES_TEST demonstrates the use of EULER_POLY_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 February 2015 # # Author: # # John Burkardt # print '' print 'EULER_POLY_VALUES_TEST:' print ' EULER_POLY_VALUES stores values of the Euler polynomials.' print '' print ' N X FX' print '' n_data = 0 while ( True ): n_data, n, x, fx = euler_poly_values ( n_data ) if ( n_data == 0 ): break print ' %6d %12f %24.16g' % ( n, x, fx ) print '' print 'EULER_POLY_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) euler_poly_values_test ( ) timestamp ( )