#!/usr/bin/env python # def extreme_values_cdf_values ( n_data ): #*****************************************************************************80 # ## EXTREME_VALUES_CDF_VALUES returns some values of the Extreme Values CDF. # # Discussion: # # In Mathematica, the function can be evaluated by: # # Needs["Statistics`ContinuousDistributions`"] # dist = ExtremeValuesDistribution [ alpha, beta ] # CDF [ dist, x ] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real ALPHA, the first parameter of the distribution. # # Output, real BETA, the second parameter of the distribution. # # Output, real X, the argument of the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 12 alpha_vec = np.array ( ( 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.2000000000000000E+01, \ 0.3000000000000000E+01, \ 0.4000000000000000E+01, \ 0.5000000000000000E+01 )) beta_vec = np.array ( ( 0.5000000000000000E+00, \ 0.5000000000000000E+00, \ 0.5000000000000000E+00, \ 0.5000000000000000E+00, \ 0.2000000000000000E+01, \ 0.3000000000000000E+01, \ 0.4000000000000000E+01, \ 0.5000000000000000E+01, \ 0.2000000000000000E+01, \ 0.2000000000000000E+01, \ 0.2000000000000000E+01, \ 0.2000000000000000E+01 )) f_vec = np.array ( ( 0.3678794411714423E+00, \ 0.8734230184931166E+00, \ 0.9818510730616665E+00, \ 0.9975243173927525E+00, \ 0.5452392118926051E+00, \ 0.4884435800065159E+00, \ 0.4589560693076638E+00, \ 0.4409910259429826E+00, \ 0.5452392118926051E+00, \ 0.3678794411714423E+00, \ 0.1922956455479649E+00, \ 0.6598803584531254E-01 )) x_vec = np.array ( ( 0.1000000000000000E+01, \ 0.2000000000000000E+01, \ 0.3000000000000000E+01, \ 0.4000000000000000E+01, \ 0.2000000000000000E+01, \ 0.2000000000000000E+01, \ 0.2000000000000000E+01, \ 0.2000000000000000E+01, \ 0.3000000000000000E+01, \ 0.3000000000000000E+01, \ 0.3000000000000000E+01, \ 0.3000000000000000E+01 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 alpha = 0.0 beta = 0.0 x = 0.0 f = 0.0 else: alpha = alpha_vec[n_data] beta = beta_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, alpha, beta, x, f def extreme_values_cdf_values_test ( ): #*****************************************************************************80 # ## EXTREME_VALUES_CDF_VALUES_TEST demonstrates the use of EXTREME_VALUES_CDF_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 February 2015 # # Author: # # John Burkardt # print '' print 'EXTREME_VALUES_CDF_VALUES_TEST:' print ' EXTREME_VALUES_CDF_VALUES stores values of the Extreme Values CDF.' print '' print ' Alpha Beta X CDF' print '' n_data = 0 while ( True ): n_data, alpha, beta, x, f = extreme_values_cdf_values ( n_data ) if ( n_data == 0 ): break print ' %12f %12f %12f %24.16g' % ( alpha, beta, x, f ) print '' print 'EXTREME_VALUES_CDF_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) extreme_values_cdf_values_test ( ) timestamp ( )