#!/usr/bin/env python # def f_cdf_values ( n_data ): #*****************************************************************************80 # ## F_CDF_VALUES returns some values of the F CDF test function. # # Discussion: # # In Mathematica, the function can be evaluated by: # # Needs["Statistics`ContinuousDistributions`"] # dist = FRatioDistribution [ dfn, dfd ] # CDF [ dist, x ] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer A, integer B, the parameters of the function. # # Output, real X, the argument of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 20 a_vec = np.array ( ( \ 1, \ 1, \ 5, \ 1, \ 2, \ 4, \ 1, \ 6, \ 8, \ 1, \ 3, \ 6, \ 1, \ 1, \ 1, \ 1, \ 2, \ 3, \ 4, \ 5 )) b_vec = np.array ( ( \ 1, \ 5, \ 1, \ 5, \ 10, \ 20, \ 5, \ 6, \ 16, \ 5, \ 10, \ 12, \ 5, \ 5, \ 5, \ 5, \ 5, \ 5, \ 5, \ 5 )) f_vec = np.array ( ( \ 0.5000000000000000E+00, \ 0.4999714850534485E+00, \ 0.4996034370170990E+00, \ 0.7496993658293228E+00, \ 0.7504656462757382E+00, \ 0.7514156325324275E+00, \ 0.8999867031372156E+00, \ 0.8997127554259699E+00, \ 0.9002845660853669E+00, \ 0.9500248817817622E+00, \ 0.9500574946122442E+00, \ 0.9501926400000000E+00, \ 0.9750133887312993E+00, \ 0.9900022327445249E+00, \ 0.9949977837872073E+00, \ 0.9989999621122122E+00, \ 0.5687988496283079E+00, \ 0.5351452100063650E+00, \ 0.5143428032407864E+00, \ 0.5000000000000000E+00 )) x_vec = np.array ( ( \ 1.00E+00, \ 0.528E+00, \ 1.89E+00, \ 1.69E+00, \ 1.60E+00, \ 1.47E+00, \ 4.06E+00, \ 3.05E+00, \ 2.09E+00, \ 6.61E+00, \ 3.71E+00, \ 3.00E+00, \ 10.01E+00, \ 16.26E+00, \ 22.78E+00, \ 47.18E+00, \ 1.00E+00, \ 1.00E+00, \ 1.00E+00, \ 1.00E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 a = 0 b = 0 x = 0.0 f = 0.0 else: a = a_vec[n_data] b = b_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, a, b, x, f def f_cdf_values_test ( ): #*****************************************************************************80 # ## F_CDF_VALUES_TEST demonstrates the use of F_CDF_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 February 2015 # # Author: # # John Burkardt # print '' print 'F_CDF_VALUES_TEST:' print ' F_CDF_VALUES stores values of the F CDF.' print '' print ' A B X F_CDF(A,B,X)' print '' n_data = 0 while ( True ): n_data, a, b, x, f = f_cdf_values ( n_data ) if ( n_data == 0 ): break print ' %12d %12d %12f %24.16g' % ( a, b, x, f ) print '' print 'F_CDF_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) f_cdf_values_test ( ) timestamp ( )