#!/usr/bin/env python # def f_noncentral_cdf_values ( n_data ): #*****************************************************************************80 # ## F_NONCENTRAL_CDF_VALUES: values of the noncentral F CDF. # # Discussion: # # In Mathematica, the function can be evaluated by: # # Needs["Statistics`ContinuousDistributions`"] # dist = NoncentralFRatioDistribution [ n1, n2, lambda ] # CDF [ dist, x ] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer A, integer B, the numerator and denominator # degrees of freedom. # # Output, real LAM, the noncentrality parameter. # # Output, real X, the argument of the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 22 a_vec = np.array ( ( \ 1, 1, 1, 1, \ 1, 1, 1, 1, \ 1, 1, 2, 2, \ 3, 3, 4, 4, \ 5, 5, 6, 6, \ 8, 16 )) b_vec = np.array ( ( \ 1, 5, 5, 5, \ 5, 5, 5, 5, \ 5, 5, 5, 10, \ 5, 5, 5, 5, \ 1, 5, 6, 12, \ 16, 8 )) f_vec = np.array ( ( \ 0.5000000000000000E+00, \ 0.6367825323508774E+00, \ 0.5840916116305482E+00, \ 0.3234431872392788E+00, \ 0.4501187879813550E+00, \ 0.6078881441188312E+00, \ 0.7059275551414605E+00, \ 0.7721782003263727E+00, \ 0.8191049017635072E+00, \ 0.3170348430749965E+00, \ 0.4327218008454471E+00, \ 0.4502696915707327E+00, \ 0.4261881186594096E+00, \ 0.6753687206341544E+00, \ 0.4229108778879005E+00, \ 0.6927667261228938E+00, \ 0.3632174676491226E+00, \ 0.4210054012695865E+00, \ 0.4266672258818927E+00, \ 0.4464016600524644E+00, \ 0.8445888579504827E+00, \ 0.4339300273343604E+00 )) lam_vec = np.array ( ( \ 0.00E+00, \ 0.00E+00, \ 0.25E+00, \ 1.00E+00, \ 1.00E+00, \ 1.00E+00, \ 1.00E+00, \ 1.00E+00, \ 1.00E+00, \ 2.00E+00, \ 1.00E+00, \ 1.00E+00, \ 1.00E+00, \ 2.00E+00, \ 1.00E+00, \ 1.00E+00, \ 0.00E+00, \ 1.00E+00, \ 1.00E+00, \ 1.00E+00, \ 1.00E+00, \ 1.00E+00 )) x_vec = np.array ( ( \ 1.00E+00, \ 1.00E+00, \ 1.00E+00, \ 0.50E+00, \ 1.00E+00, \ 2.00E+00, \ 3.00E+00, \ 4.00E+00, \ 5.00E+00, \ 1.00E+00, \ 1.00E+00, \ 1.00E+00, \ 1.00E+00, \ 1.00E+00, \ 1.00E+00, \ 2.00E+00, \ 1.00E+00, \ 1.00E+00, \ 1.00E+00, \ 1.00E+00, \ 2.00E+00, \ 2.00E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 a = 0 b = 0 lam = 0.0 x = 0.0 f = 0.0 else: a = a_vec[n_data] b = b_vec[n_data] lam = lam_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, a, b, lam, x, f def f_noncentral_cdf_values_test ( ): #*****************************************************************************80 # ## F_NONCENTRAL_CDF_VALUES_TEST demonstrates the use of F_NONCENTRAL_CDF_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 February 2015 # # Author: # # John Burkardt # print '' print 'F_NONCENTRAL_CDF_VALUES_TEST:' print ' F_NONCENTRAL_CDF_VALUES stores values of the noncentral F CDF.' print '' print ' A B LAM X F' print '' n_data = 0 while ( True ): n_data, a, b, lam, x, f = f_noncentral_cdf_values ( n_data ) if ( n_data == 0 ): break print ' %4d %4d %12f %12f %24.16g' % ( a, b, lam, x, f ) print '' print 'F_NONCENTRAL_CDF_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) f_noncentral_cdf_values_test ( ) timestamp ( )