#!/usr/bin/env python # def gamma_inc_tricomi_values ( n_data ): #*****************************************************************************80 # ## GAMMA_INC_TRICOMI_VALUES: values of Tricomi's incomplete Gamma function. # # Discussion: # # Tricomi's incomplete Gamma function is defined as: # # 1/Gamma(A) * 1/X^A * Integral ( 0 <= T <= X ) T^(A-1) * exp(-T) dT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real A, the parameter of the function. # # Output, real X, the argument of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 20 a_vec = np.array ( ( \ 0.10E+00, \ 0.10E+00, \ 0.10E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.10E+01, \ 0.10E+01, \ 0.10E+01, \ 0.11E+01, \ 0.11E+01, \ 0.11E+01, \ 0.20E+01, \ 0.20E+01, \ 0.20E+01, \ 0.60E+01, \ 0.60E+01, \ 0.11E+02, \ 0.26E+02, \ 0.41E+02 )) f_vec = np.array ( ( \ 1.048292641463504E+00, \ 1.024577737369574E+00, \ 0.9493712443185374E+00, \ 1.100793230316492E+00, \ 0.8998911979655218E+00, \ 0.5301656062431039E+00, \ 0.9516258196404043E+00, \ 0.6321205588285577E+00, \ 0.1986524106001829E+00, \ 0.9071784510537487E+00, \ 0.5891809618706485E+00, \ 0.1688269752193589E+00, \ 0.4527034271637121E+00, \ 0.1965220442795224E+00, \ 0.02025928457705232E+00, \ 0.0001721181724479739E+00, \ 3.280858070850586E-07, \ 5.244396471821590E-14, \ 2.013462926183376E-37, \ 1.230623887499875E-68 )) x_vec = np.array ( ( \ 0.30E-01, \ 0.30E+00, \ 0.15E+01, \ 0.75E-01, \ 0.75E+00, \ 0.35E+01, \ 0.10E+00, \ 0.10E+01, \ 0.50E+01, \ 0.10E+00, \ 0.10E+01, \ 0.50E+01, \ 0.15E+00, \ 0.15E+01, \ 0.70E+01, \ 0.25E+01, \ 0.12E+02, \ 0.16E+02, \ 0.25E+02, \ 0.45E+02 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 a = 0.0 x = 0.0 f = 0.0 else: a = a_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, a, x, f def gamma_inc_tricomi_values_test ( ): #*****************************************************************************80 # ## GAMMA_INC_TRICOMI_VALUES_TEST demonstrates the use of GAMMA_INC_TRICOMI_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 February 2015 # # Author: # # John Burkardt # print '' print 'GAMMA_INC_TRICOMI_VALUES_TEST:' print ' GAMMA_INC_TRICOMI_VALUES stores values of an incomplete Gamma function.' print '' print ' A X F(A,X)' print '' n_data = 0 while ( True ): n_data, a, x, f = gamma_inc_tricomi_values ( n_data ) if ( n_data == 0 ): break print ' %12f %12f %24.16g' % ( a, x, f ) print '' print 'GAMMA_INC_TRICOMI_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) gamma_inc_tricomi_values_test ( ) timestamp ( )