#!/usr/bin/env python # def gamma_inc_values ( n_data ): #*****************************************************************************80 # ## GAMMA_INC_VALUES returns some values of the incomplete Gamma function. # # Discussion: # # The (normalized) incomplete Gamma function is defined as: # # Integral ( X <= T < oo ) T^(A-1) * exp(-T) dT. # # In Mathematica, the function can be evaluated by: # # Gamma[A,X] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real A, the parameter of the function. # # Output, real X, the argument of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 20 a_vec = np.array ( ( \ 0.10E+00, \ 0.10E+00, \ 0.10E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.10E+01, \ 0.10E+01, \ 0.10E+01, \ 0.11E+01, \ 0.11E+01, \ 0.11E+01, \ 0.20E+01, \ 0.20E+01, \ 0.20E+01, \ 0.60E+01, \ 0.60E+01, \ 0.11E+02, \ 0.26E+02, \ 0.41E+02 )) f_vec = np.array ( ( \ 2.490302836300570E+00, \ 0.8718369702247978E+00, \ 0.1079213896175866E+00, \ 1.238121685818417E+00, \ 0.3911298052193973E+00, \ 0.01444722098952533E+00, \ 0.9048374180359596E+00, \ 0.3678794411714423E+00, \ 0.006737946999085467E+00, \ 0.8827966752611692E+00, \ 0.3908330082003269E+00, \ 0.008051456628620993E+00, \ 0.9898141728888165E+00, \ 0.5578254003710746E+00, \ 0.007295055724436130E+00, \ 114.9574754165633E+00, \ 2.440923530031405E+00, \ 280854.6620274718E+00, \ 8.576480283455533E+24, \ 2.085031346403364E+47 )) x_vec = np.array ( ( \ 0.30E-01, \ 0.30E+00, \ 0.15E+01, \ 0.75E-01, \ 0.75E+00, \ 0.35E+01, \ 0.10E+00, \ 0.10E+01, \ 0.50E+01, \ 0.10E+00, \ 0.10E+01, \ 0.50E+01, \ 0.15E+00, \ 0.15E+01, \ 0.70E+01, \ 0.25E+01, \ 0.12E+02, \ 0.16E+02, \ 0.25E+02, \ 0.45E+02 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 a = 0.0 x = 0.0 f = 0.0 else: a = a_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, a, x, f def gamma_inc_values_test ( ): #*****************************************************************************80 # ## GAMMA_INC_VALUES_TEST demonstrates the use of GAMMA_INC_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 February 2015 # # Author: # # John Burkardt # print '' print 'GAMMA_INC_VALUES_TEST:' print ' GAMMA_INC_VALUES stores values of the incomplete Gamma function.' print '' print ' A X GAMMA_INC(A,X)' print '' n_data = 0 while ( True ): n_data, a, x, f = gamma_inc_values ( n_data ) if ( n_data == 0 ): break print ' %12f %12f %24.16g' % ( a, x, f ) print '' print 'GAMMA_INC_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) gamma_inc_values_test ( ) timestamp ( )