#!/usr/bin/env python # def gegenbauer_poly_values ( n_data ): #*****************************************************************************80 # ## GEGENBAUER_POLY_VALUES returns some values of the Gegenbauer polynomials. # # Discussion: # # The Gegenbauer polynomials are also known as the "spherical # polynomials" or "ultraspherical polynomials". # # In Mathematica, the function can be evaluated by: # # GegenbauerC[n,m,x] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, the order parameter of the function. # # Output, real A, the real parameter of the function. # # Output, real X, the argument of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 38 a_vec = np.array ( ( \ 0.5E+00, \ 0.5E+00, \ 0.5E+00, \ 0.5E+00, \ 0.5E+00, \ 0.5E+00, \ 0.5E+00, \ 0.5E+00, \ 0.5E+00, \ 0.5E+00, \ 0.5E+00, \ 0.0E+00, \ 1.0E+00, \ 2.0E+00, \ 3.0E+00, \ 4.0E+00, \ 5.0E+00, \ 6.0E+00, \ 7.0E+00, \ 8.0E+00, \ 9.0E+00, \ 10.0E+00, \ 3.0E+00, \ 3.0E+00, \ 3.0E+00, \ 3.0E+00, \ 3.0E+00, \ 3.0E+00, \ 3.0E+00, \ 3.0E+00, \ 3.0E+00, \ 3.0E+00, \ 3.0E+00, \ 3.0E+00, \ 3.0E+00, \ 3.0E+00, \ 3.0E+00, \ 3.0E+00 )) f_vec = np.array ( ( \ 1.0000000000E+00, \ 0.2000000000E+00, \ -0.4400000000E+00, \ -0.2800000000E+00, \ 0.2320000000E+00, \ 0.3075200000E+00, \ -0.0805760000E+00, \ -0.2935168000E+00, \ -0.0395648000E+00, \ 0.2459712000E+00, \ 0.1290720256E+00, \ 0.0000000000E+00, \ -0.3600000000E+00, \ -0.0800000000E+00, \ 0.8400000000E+00, \ 2.4000000000E+00, \ 4.6000000000E+00, \ 7.4400000000E+00, \ 10.9200000000E+00, \ 15.0400000000E+00, \ 19.8000000000E+00, \ 25.2000000000E+00, \ -9.0000000000E+00, \ -0.1612800000E+00, \ -6.6729600000E+00, \ -8.3750400000E+00, \ -5.5267200000E+00, \ 0.0000000000E+00, \ 5.5267200000E+00, \ 8.3750400000E+00, \ 6.6729600000E+00, \ 0.1612800000E+00, \ -9.0000000000E+00, \ -15.4252800000E+00, \ -9.6969600000E+00, \ 22.4409600000E+00, \ 100.8892800000E+00, \ 252.0000000000E+00 )) n_vec = np.array ( ( \ 0, 1, 2, \ 3, 4, 5, \ 6, 7, 8, \ 9, 10, 2, \ 2, 2, 2, \ 2, 2, 2, \ 2, 2, 2, \ 2, 5, 5, \ 5, 5, 5, \ 5, 5, 5, \ 5, 5, 5, \ 5, 5, 5, \ 5, 5 )) x_vec = np.array ( ( \ 0.20E+00, \ 0.20E+00, \ 0.20E+00, \ 0.20E+00, \ 0.20E+00, \ 0.20E+00, \ 0.20E+00, \ 0.20E+00, \ 0.20E+00, \ 0.20E+00, \ 0.20E+00, \ 0.40E+00, \ 0.40E+00, \ 0.40E+00, \ 0.40E+00, \ 0.40E+00, \ 0.40E+00, \ 0.40E+00, \ 0.40E+00, \ 0.40E+00, \ 0.40E+00, \ 0.40E+00, \ -0.50E+00, \ -0.40E+00, \ -0.30E+00, \ -0.20E+00, \ -0.10E+00, \ 0.00E+00, \ 0.10E+00, \ 0.20E+00, \ 0.30E+00, \ 0.40E+00, \ 0.50E+00, \ 0.60E+00, \ 0.70E+00, \ 0.80E+00, \ 0.90E+00, \ 1.00E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 a = 0.0 x = 0.0 f = 0.0 else: n = n_vec[n_data] a = a_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, n, a, x, f def gegenbauer_poly_values_test ( ): #*****************************************************************************80 # ## GEGENBAUER_POLY_VALUES_TEST demonstrates the use of GEGENBAUER_POLY_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 February 2015 # # Author: # # John Burkardt # print '' print 'GEGENBAUER_POLY_VALUES_TEST:' print ' GEGENBAUER_POLY_VALUES stores values of the Gegenbauer polynomials.' print '' print ' N A X FX' print '' n_data = 0 while ( True ): n_data, n, a, x, fx = gegenbauer_poly_values ( n_data ) if ( n_data == 0 ): break print ' %6d %12f %12f %24.16g' % ( n, a, x, fx ) print '' print 'GEGENBAUER_POLY_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) gegenbauer_poly_values_test ( ) timestamp ( )