#!/usr/bin/env python # def geometric_cdf_values ( n_data ): #*****************************************************************************80 # ## GEOMETRIC_CDF_VALUES returns values of the geometric CDF. # # Discussion: # # The geometric or Pascal probability density function gives the # probability that the first success will happen on the X-th Bernoulli # trial, given that the probability of a success on a single trial is P. # # The value of CDF ( X, P ) is the probability that the first success # will happen on or before the X-th trial. # # In Mathematica, the function can be evaluated by: # # Needs["Statistics`DiscreteDistributions`] # dist = GeometricDistribution [ p ] # CDF [ dist, x ] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 February 2015 # # Author: # # John Burkardt # # Reference: # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Daniel Zwillinger and Stephen Kokoska, # CRC Standard Probability and Statistics Tables and Formulae, # Chapman and Hall / CRC Press, 2000. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer X, the number of trials. # # Output, real P, the probability of success # on one trial. # # Output, real CDF, the cumulative density function. # import numpy as np n_max = 14 cdf_vec = np.array ( ( \ 0.1900000000000000E+00, \ 0.2710000000000000E+00, \ 0.3439000000000000E+00, \ 0.6861894039100000E+00, \ 0.3600000000000000E+00, \ 0.4880000000000000E+00, \ 0.5904000000000000E+00, \ 0.9141006540800000E+00, \ 0.7599000000000000E+00, \ 0.8704000000000000E+00, \ 0.9375000000000000E+00, \ 0.9843750000000000E+00, \ 0.9995117187500000E+00, \ 0.9999000000000000E+00 )) p_vec = np.array ( ( \ 0.1E+00, \ 0.1E+00, \ 0.1E+00, \ 0.1E+00, \ 0.2E+00, \ 0.2E+00, \ 0.2E+00, \ 0.2E+00, \ 0.3E+00, \ 0.4E+00, \ 0.5E+00, \ 0.5E+00, \ 0.5E+00, \ 0.9E+00 )) x_vec = np.array ( ( \ 1, 2, 3, 10, 1, \ 2, 3, 10, 3, 3, \ 3, 5, 10, 3 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 p = 0.0 x = 0 cdf = 0.0 else: p = p_vec[n_data] x = x_vec[n_data] cdf = cdf_vec[n_data] n_data = n_data + 1 return n_data, x, p, cdf def geometric_cdf_values_test ( ): #*****************************************************************************80 # ## GEOMETRIC_CDF_VALUES_TEST demonstrates the use of GEOMETRIC_CDF_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 February 2015 # # Author: # # John Burkardt # print '' print 'GEOMETRIC_CDF_VALUES_TEST:' print ' GEOMETRIC_CDF_VALUES stores values of the Geometric CDF.' print '' print ' X P GEOMETRIC_CDF(X,P)' print '' n_data = 0 while ( True ): n_data, x, p, cdf = geometric_cdf_values ( n_data ) if ( n_data == 0 ): break print ' %12d %12g %24.16g' % ( x, p, cdf ) print '' print 'GEOMETRIC_CDF_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) geometric_cdf_values_test ( ) timestamp ( )