#!/usr/bin/env python def goodwin_values ( n_data ): #*****************************************************************************80 # ## GOODWIN_VALUES returns some values of the Goodwin and Staton function. # # Discussion: # # The function is defined by: # # GOODWIN(x) = Integral ( 0 <= t < infinity ) exp ( -t^2 ) / ( t + x ) dt # # The data was reported by McLeod. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 February 2015 # # Author: # # John Burkardt # # Reference: # # Allan McLeod, # Algorithm 757, MISCFUN: A software package to compute uncommon # special functions, # ACM Transactions on Mathematical Software, # Volume 22, Number 3, September 1996, pages 288-301. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 20 f_vec = np.array ( ( \ 0.59531540040441651584E+01, \ 0.45769601268624494109E+01, \ 0.32288921331902217638E+01, \ 0.19746110873568719362E+01, \ 0.96356046208697728563E+00, \ 0.60513365250334458174E+00, \ 0.51305506459532198016E+00, \ 0.44598602820946133091E+00, \ 0.37344458206879749357E+00, \ 0.35433592884953063055E+00, \ 0.33712156518881920994E+00, \ 0.29436170729362979176E+00, \ 0.25193499644897222840E+00, \ 0.22028778222123939276E+00, \ 0.19575258237698917033E+00, \ 0.17616303166670699424E+00, \ 0.16015469479664778673E+00, \ 0.14096116876193391066E+00, \ 0.13554987191049066274E+00, \ 0.11751605060085098084E+00 )) x_vec = np.array ( ( \ 0.0019531250E+00, \ 0.0078125000E+00, \ 0.0312500000E+00, \ 0.1250000000E+00, \ 0.5000000000E+00, \ 1.0000000000E+00, \ 1.2500000000E+00, \ 1.5000000000E+00, \ 1.8750000000E+00, \ 2.0000000000E+00, \ 2.1250000000E+00, \ 2.5000000000E+00, \ 3.0000000000E+00, \ 3.5000000000E+00, \ 4.0000000000E+00, \ 4.5000000000E+00, \ 5.0000000000E+00, \ 5.7500000000E+00, \ 6.0000000000E+00, \ 7.0000000000E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 f = 0.0 else: x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, x, f def goodwin_values_test ( ): #*****************************************************************************80 # ## GOODWIN_VALUE_TEST demonstrates the use of GOODWIN_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 December 2014 # # Author: # # John Burkardt # print '' print 'GOODWIN_VALUES:' print ' GOODWIN_VALUES stores values of the Gudermannian function.' print '' print ' X GOODWIN(X)' print '' n_data = 0 while ( True ): n_data, x, fx = goodwin_values ( n_data ) if ( n_data == 0 ): break print ' %12f %24.16f' % ( x, fx ) print '' print 'GOODWIN_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) goodwin_values_test ( ) timestamp ( )