#!/usr/bin/env python def gud_values ( n_data ): #*****************************************************************************80 # ## GUD_VALUES returns some values of the Gudermannian function. # # Discussion: # # The Gudermannian function relates the hyperbolic and trigonomentric # functions. For any argument X, there is a corresponding value # GD so that # # SINH(X) = TAN(GD). # # This value GD is called the Gudermannian of X and symbolized # GD(X). The inverse Gudermannian function is given as input a value # GD and computes the corresponding value X. # # GD(X) = 2 * arctan ( exp ( X ) ) - PI / 2 # # In Mathematica, the function can be evaluated by: # # 2 * Atan[Exp[x]] - Pi/2 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 December 2014 # # Author: # # John Burkardt # # Reference: # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Daniel Zwillinger, editor, # CRC Standard Mathematical Tables and Formulae, # 30th Edition, # CRC Press, 1996. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real X, the argument of the function. # # Output, real FX, the value of the function. # import numpy as np n_max = 13 fx_vec = np.array ( ( \ -0.1301760336046015E+01, \ -0.8657694832396586E+00, \ 0.0000000000000000E+00, \ 0.9983374879348662E-01, \ 0.1986798470079397E+00, \ 0.4803810791337294E+00, \ 0.8657694832396586E+00, \ 0.1131728345250509E+01, \ 0.1301760336046015E+01, \ 0.1406993568936154E+01, \ 0.1471304341117193E+01, \ 0.1510419907545700E+01, \ 0.1534169144334733E+01 ) ) x_vec = np.array ( ( \ -2.0E+00, \ -1.0E+00, \ 0.0E+00, \ 0.1E+00, \ 0.2E+00, \ 0.5E+00, \ 1.0E+00, \ 1.5E+00, \ 2.0E+00, \ 2.5E+00, \ 3.0E+00, \ 3.5E+00, \ 4.0E+00 ) ) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 x = 0.0 fx = 0.0 else: x = x_vec[n_data] fx = fx_vec[n_data] n_data = n_data + 1 return n_data, x, fx def gud_values_test ( ): #*****************************************************************************80 # ## GUD_VALUE_TEST demonstrates the use of GUD_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 December 2014 # # Author: # # John Burkardt # print '' print 'GUD_VALUES:' print ' GUD_VALUES stores values of the Gudermannian function.' print '' print ' X GUD(X)' print '' n_data = 0 while ( True ): n_data, x, fx = gud_values ( n_data ) if ( n_data == 0 ): break print ' %12f %24.16f' % ( x, fx ) print '' print 'GUD_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) gud_values_test ( ) timestamp ( )