#!/usr/bin/env python # def hermite_function_values ( n_data ): #*****************************************************************************80 # ## HERMITE_FUNCTION_VALUES: values of the Hermite function. # # Discussion: # # In Mathematica, the function can be evaluated by: # # Hf(n,x) = HermiteH[n,x] # * Exp [ -1/2 * x^2] / Sqrt [ 2^n * n! * Sqrt[Pi] ] # # The Hermite functions are orthonormal: # # Integral ( -oo < x < +oo ) Hf(m,x) Hf(n,x) dx = delta ( m, n ) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz, Irene Stegun, # Handbook of Mathematical Functions, # National Bureau of Standards, 1964, # ISBN: 0-486-61272-4, # LC: QA47.A34. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Cambridge University Press, 1999, # ISBN: 0-521-64314-7, # LC: QA76.95.W65. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 # before the first call. On each call, the routine increments N_DATA by 1, # and returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, the order of the polynomial. # # Output, real X, the point where the polynomial is evaluated. # # Output, real F, the value of the function. # import numpy as np n_max = 23 f_vec = np.array ( ( \ 0.7511255444649425E+00, 0.0000000000000000E+00, -0.5311259660135985E+00, \ 0.0000000000000000E+00, 0.4599685791773266E+00, 0.0000000000000000E+00, \ 0.4555806720113325E+00, 0.6442883651134752E+00, 0.3221441825567376E+00, \ -0.2630296236233334E+00, -0.4649750762925110E+00, -0.5881521185179581E-01, \ 0.3905052515434106E+00, 0.2631861423064045E+00, -0.2336911435996523E+00, \ -0.3582973361472840E+00, 0.6146344487883041E-01, 0.3678312067984882E+00, \ 0.9131969309166278E-01, 0.4385750950032321E+00, -0.2624689527931006E-01, \ 0.5138426125477819E+00, 0.09355563118061758E+00 )) n_vec = np.array ( ( \ 0, 1, 2, \ 3, 4, 5, \ 0, 1, 2, \ 3, 4, 5, \ 6, 7, 8, \ 9, 10, 11, \ 12, 5, 5, \ 5, 5 )) x_vec = np.array ( ( \ 0.0E+00, 0.0E+00, 0.0E+00, \ 0.0E+00, 0.0E+00, 0.0E+00, \ 1.0E+00, 1.0E+00, 1.0E+00, \ 1.0E+00, 1.0E+00, 1.0E+00, \ 1.0E+00, 1.0E+00, 1.0E+00, \ 1.0E+00, 1.0E+00, 1.0E+00, \ 1.0E+00, 0.5E+00, 2.0E+00, \ 3.0E+00, 4.0E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 x = 0.0 f = 0.0 else: n = n_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, n, x, f def hermite_function_values_test ( ): #*****************************************************************************80 # ## HERMITE_FUNCTION_VALUES_TEST demonstrates the use of HERMITE_FUNCTION_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 February 2015 # # Author: # # John Burkardt # print '' print 'HERMITE_FUNCTION_VALUES_TEST:' print ' HERMITE_FUNCTION_VALUES stores values of the Hermite function.' print '' print ' N X F' print '' n_data = 0 while ( True ): n_data, n, x, f = hermite_function_values ( n_data ) if ( n_data == 0 ): break print ' %6d %12g %24.16g' % ( n, x, f ) print '' print 'HERMITE_FUNCTION_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) hermite_function_values_test ( ) timestamp ( )