#!/usr/bin/env python # def hermite_poly_prob_values ( n_data ): #*****************************************************************************80 # ## HERMITE_POLY_PROB_VALUES: values of the probabilist's Hermite polynomial. # # Discussion: # # In Mathematica, the function can be evaluated by: # # He(n,x) = HermiteH[n,x/Sqrt[2]] / Sqrt [ 2^n ] # # First terms: # # 1 # X # X^2 - 1 # X^3 - 3 X # X^4 - 6 X^2 + 3 # X^5 - 10 X^3 + 15 X # X^6 - 15 X^4 + 45 X^2 - 15 # X^7 - 21 X^5 + 105 X^3 - 105 X # X^8 - 28 X^6 + 210 X^4 - 420 X^2 + 105 # X^9 - 36 X^7 + 378 X^5 - 1260 X^3 + 945 X # X^10 - 45 X^8 + 630 X^6 - 3150 X^4 + 4725 X^2 - 945 # # Recursion: # # He(0,X) = 1, # He(1,X) = X, # He(N,X) = X * He(N-1,X) - (N-1) * He(N-2,X) # # Norm: # # Integral ( -oo < X < +oo ) exp ( - 0.5 * X^2 ) * He(M,X) He(N,X) dX # = sqrt ( 2 * pi ) * N! * delta ( N, M ) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz, Irene Stegun, # Handbook of Mathematical Functions, # National Bureau of Standards, 1964, # ISBN: 0-486-61272-4, # LC: QA47.A34. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Cambridge University Press, 1999, # ISBN: 0-521-64314-7, # LC: QA76.95.W65. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 # before the first call. On each call, the routine increments N_DATA by 1, # and returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, the order of the polynomial. # # Output, real X, the point where the polynomial is evaluated. # # Output, real F, the value of the function. # import numpy as np n_max = 18 f_vec = np.array ((\ 1.000000000000000E+00, \ 5.000000000000000E+00, \ 24.00000000000000E+00, \ 110.0000000000000E+00, \ 478.0000000000000E+00, \ 1950.000000000000E+00, \ 7360.000000000000E+00, \ 25100.00000000000E+00, \ 73980.00000000000E+00, \ 169100.0000000000E+00, \ 179680.0000000000E+00, \ -792600.0000000000E+00, \ -5939480.000000000E+00, \ 0.000000000000000E+00, \ 6.281250000000000E+00, \ 6.000000000000000E+00, \ 18.00000000000000E+00, \ 90150.00000000000E+00 )) n_vec = np.array ((\ 0, 1, 2, \ 3, 4, 5, \ 6, 7, 8, \ 9, 10, 11, \ 12, 5, 5, \ 5, 5, 5 )) x_vec = np.array ((\ 5.0E+00, \ 5.0E+00, \ 5.0E+00, \ 5.0E+00, \ 5.0E+00, \ 5.0E+00, \ 5.0E+00, \ 5.0E+00, \ 5.0E+00, \ 5.0E+00, \ 5.0E+00, \ 5.0E+00, \ 5.0E+00, \ 0.0E+00, \ 0.5E+00, \ 1.0E+00, \ 3.0E+00, \ 1.0E+01 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 x = 0.0 f = 0.0 else: n = n_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, n, x, f def hermite_poly_prob_values_test ( ): #*****************************************************************************80 # ## HERMITE_POLY_PROB_VALUES_TEST demonstrates the use of HERMITE_POLY_PROB_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 February 2015 # # Author: # # John Burkardt # print '' print 'HERMITE_POLY_PROB_VALUES_TEST:' print ' HERMITE_POLY_PROB_VALUES stores values of the Hermite probabilist polynomials.' print '' print ' N X FX' print '' n_data = 0 while ( True ): n_data, n, x, f = hermite_poly_prob_values ( n_data ) if ( n_data == 0 ): break print ' %6d %12f %24.16g' % ( n, x, f ) print '' print 'HERMITE_POLY_PROB_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) hermite_poly_prob_values_test ( ) timestamp ( )