#!/usr/bin/env python def hypergeometric_cdf_values ( n_data ): #*****************************************************************************80 # ## HYPERGEOMETRIC_CDF_VALUES returns some values of the hypergeometric CDF. # # Discussion: # # CDF(X)(A,B) is the probability of at most X successes in A trials, # given that the probability of success on a single trial is B. # # In Mathematica, the function can be evaluated by: # # Needs["Statistics`DiscreteDistributions`] # dist = HypergeometricDistribution [ sam, suc, pop ] # CDF [ dist, n ] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Daniel Zwillinger, # CRC Standard Mathematical Tables and Formulae, # 30th Edition, CRC Press, 1996, pages 651-652. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer SAM, integer SUC, integer POP, the sample size, # success size, and population parameters of the function. # # Output, integer N, the argument of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 16 f_vec = np.array ( (\ 0.6001858177500578E-01, \ 0.2615284665839845E+00, \ 0.6695237889132748E+00, \ 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.5332595856827856E+00, \ 0.1819495964117640E+00, \ 0.4448047017527730E-01, \ 0.9999991751316731E+00, \ 0.9926860896560750E+00, \ 0.8410799901444538E+00, \ 0.3459800113391901E+00, \ 0.0000000000000000E+00, \ 0.2088888139634505E-02, \ 0.3876752992448843E+00, \ 0.9135215248834896E+00 )) n_vec = np.array ( (\ 7, 8, 9, 10, \ 6, 6, 6, 6, \ 6, 6, 6, 6, \ 0, 0, 0, 0 )) pop_vec = np.array ( (\ 100, 100, 100, 100, \ 100, 100, 100, 100, \ 100, 100, 100, 100, \ 90, 200, 1000, 10000 )) sam_vec = np.array ( (\ 10, 10, 10, 10, \ 6, 7, 8, 9, \ 10, 10, 10, 10, \ 10, 10, 10, 10 )) suc_vec = np.array ( (\ 90, 90, 90, 90, \ 90, 90, 90, 90, \ 10, 30, 50, 70, \ 90, 90, 90, 90 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 sam = 0 suc = 0 pop = 0 n = 0 f = 0.0 else: sam = sam_vec[n_data] suc = suc_vec[n_data] pop = pop_vec[n_data] n = n_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, sam, suc, pop, n, f def hypergeometric_cdf_values_test ( ): #*****************************************************************************80 # ## HYPERGEOMETRIC_CDF_VALUE_TEST demonstrates the use of HYPERGEOMETRIC_CDF_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 February 2015 # # Author: # # John Burkardt # print '' print 'HYPERGEOMETRIC_CDF_VALUES:' print ' HYPERGEOMETRIC_CDF_VALUES stores values of the hypergeometric CDF.' print '' print ' Sam Suc Pop X F' print '' n_data = 0 while ( True ): n_data, sam, suc, pop, n, f = hypergeometric_cdf_values ( n_data ) if ( n_data == 0 ): break print ' %6d %6d %6d %6d %24.16f' % ( sam, suc, pop, n, f ) print '' print 'HYPERGEOMETRIC_CDF_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) hypergeometric_cdf_values_test ( ) timestamp ( )