#!/usr/bin/env python # def hypergeometric_u_values ( n_data ): #*****************************************************************************80 # ## HYPERGEOMETRIC_U_VALUES: some values of the hypergeometric function U(a,b,x). # # Discussion: # # In Mathematica, the function can be evaluated by: # # fx = HypergeometricU [ a, b, x ] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz, Irene Stegun, # Handbook of Mathematical Functions, # National Bureau of Standards, 1964, # ISBN: 0-486-61272-4, # LC: QA47.A34. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Cambridge University Press, 1999, # ISBN: 0-521-64314-7, # LC: QA76.95.W65. # # Daniel Zwillinger, editor, # CRC Standard Mathematical Tables and Formulae, # 30th Edition, # CRC Press, 1996, # ISBN: 0-8493-2479-3, # LC: QA47.M315. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 # before the first call. On each call, the routine increments N_DATA by 1, # and returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real A, B, X, the parameters. # # Output, real F, the value of the function. # import numpy as np n_max = 24 a_vec = np.array ( (\ -2.500, \ -0.500, \ 0.500, \ 2.500, \ -2.500, \ -0.500, \ 0.500, \ 2.500, \ -2.500, \ -0.500, \ 0.500, \ 2.500, \ 0.825, \ 1.100, \ 1.650, \ 3.300, \ 0.825, \ 1.100, \ 1.650, \ 3.300, \ 0.825, \ 1.100, \ 1.650, \ 3.300 )) b_vec = np.array ( (\ 3.3, \ 1.1, \ 1.1, \ 3.3, \ 3.3, \ 1.1, \ 1.1, \ 3.3, \ 3.3, \ 1.1, \ 1.1, \ 3.3, \ 6.7, \ 6.7, \ 6.7, \ 6.7, \ 6.7, \ 6.7, \ 6.7, \ 6.7, \ 6.7, \ 6.7, \ 6.7, \ 6.7 )) f_vec = np.array ( (\ -68.693628728078601389E+00, \ -0.0029710551374761070801E+00, \ 1.5008631742177797301E+00, \ 20.614688244200596134E+00, \ 7.4563815469305551938E+00, \ 1.0155793767749293733E+00, \ 0.73446538936622668912E+00, \ 0.28046404941879399225E+00, \ 3.4508153741446547607E+00, \ 1.5156637368753063495E+00, \ 0.56042118587934993510E+00, \ 0.064897147735134223341E+00, \ 223432.02356977463356E+00, \ 263079.25980740811495E+00, \ 269802.90319351274132E+00, \ 82809.311335606553425E+00, \ 26.465684783131844524E+00, \ 28.093506172516056560E+00, \ 23.889164624518872504E+00, \ 4.5338847857070388229E+00, \ 3.0224469362694842535E+00, \ 2.8040650913713359934E+00, \ 1.9262578111480172682E+00, \ 0.23020518115860909098E+00 )) x_vec = np.array ( (\ 0.25, \ 0.25, \ 0.25, \ 0.25, \ 1.55, \ 1.55, \ 1.55, \ 1.55, \ 2.85, \ 2.85, \ 2.85, \ 2.85, \ 0.25, \ 0.25, \ 0.25, \ 0.25, \ 1.55, \ 1.55, \ 1.55, \ 1.55, \ 2.85, \ 2.85, \ 2.85, \ 2.85 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 a = 0.0 b = 0.0 x = 0.0 f = 0.0 else: a = a_vec[n_data] b = b_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, a, b, x, f def hypergeometric_u_values_test ( ): #*****************************************************************************80 # ## HYPERGEOMETRIC_U_VALUES_TEST demonstrates the use of HYPERGEOMETRIC_U_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 February 2015 # # Author: # # John Burkardt # print '' print 'HYPERGEOMETRIC_U_VALUES_TEST:' print ' HYPERGEOMETRIC_U_VALUES stores values of the Hypergeometric U function.' print '' print ' A B X F' print '' n_data = 0 while ( True ): n_data, a, b, x, f = hypergeometric_u_values ( n_data ) if ( n_data == 0 ): break print ' %12f %12f %12f %24.16g' % ( a, b, x, f ) print '' print 'HYPERGEOMETRIC_U_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) hypergeometric_u_values_test ( ) timestamp ( )