#!/usr/bin/env python # def jacobi_cn_values ( n_data ): #*****************************************************************************80 # ## JACOBI_CN_VALUES returns some values of the Jacobi elliptic function CN(A,X). # # Discussion: # # In Mathematica, the function can be evaluated by: # # JacobiCN[ x, a ] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, real A, the parameter of the function. # # Output, real X, the argument of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 20 a_vec = np.array ( (\ 0.0E+00, \ 0.0E+00, \ 0.0E+00, \ 0.0E+00, \ 0.0E+00, \ 0.5E+00, \ 0.5E+00, \ 0.5E+00, \ 0.5E+00, \ 0.5E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00, \ 1.0E+00 )) f_vec = np.array ( (\ 0.9950041652780258E+00, \ 0.9800665778412416E+00, \ 0.8775825618903727E+00, \ 0.5403023058681397E+00, \ -0.4161468365471424E+00, \ 0.9950124626090582E+00, \ 0.9801976276784098E+00, \ 0.8822663948904403E+00, \ 0.5959765676721407E+00, \ -0.1031836155277618E+00, \ 0.9950207489532265E+00, \ 0.9803279976447253E+00, \ 0.8868188839700739E+00, \ 0.6480542736638854E+00, \ 0.2658022288340797E+00, \ 0.3661899347368653E-01, \ 0.9803279976447253E+00, \ 0.8868188839700739E+00, \ 0.6480542736638854E+00, \ 0.2658022288340797E+00 )) x_vec = np.array ( (\ 0.1E+00, \ 0.2E+00, \ 0.5E+00, \ 1.0E+00, \ 2.0E+00, \ 0.1E+00, \ 0.2E+00, \ 0.5E+00, \ 1.0E+00, \ 2.0E+00, \ 0.1E+00, \ 0.2E+00, \ 0.5E+00, \ 1.0E+00, \ 2.0E+00, \ 4.0E+00, \ -0.2E+00, \ -0.5E+00, \ -1.0E+00, \ -2.0E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 a = 0.0 x = 0.0 f = 0.0 else: a = a_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, a, x, f def jacobi_cn_values_test ( ): #*****************************************************************************80 # ## JACOBI_CN_VALUES_TEST demonstrates the use of JACOBI_CN_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 February 2015 # # Author: # # John Burkardt # print '' print 'JACOBI_CN_VALUES_TEST:' print ' JACOBI_CN_VALUES stores values of the Jacobi CN function.' print '' print ' A X JACOBI_CN(A,X)' print '' n_data = 0 while ( True ): n_data, a, x, f = jacobi_cn_values ( n_data ) if ( n_data == 0 ): break print ' %12f %12f %24.16g' % ( a, x, f ) print '' print 'JACOBI_CN_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) jacobi_cn_values_test ( ) timestamp ( )