#!/usr/bin/env python # def jacobi_poly_values ( n_data ): #*****************************************************************************80 # ## JACOBI_POLY_VALUES returns some values of the Jacobi polynomial. # # Discussion: # # In Mathematica, the function can be evaluated by: # # JacobiP[ n, a, b, x ] # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 February 2015 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz and Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, the degree of the polynomial. # # Output, real A, B, parameters of the function. # # Output, real X, the argument of the function. # # Output, real F, the value of the function. # import numpy as np n_max = 26 a_vec = np.array ( (\ 0.0, 0.0, 0.0, 0.0, \ 0.0, 0.0, 1.0, 2.0, \ 3.0, 4.0, 5.0, 0.0, \ 0.0, 0.0, 0.0, 0.0, \ 0.0, 0.0, 0.0, 0.0, \ 0.0, 0.0, 0.0, 0.0, \ 0.0, 0.0 )) b_vec = np.array ( (\ 1.0, 1.0, 1.0, 1.0, \ 1.0, 1.0, 1.0, 1.0, \ 1.0, 1.0, 1.0, 2.0, \ 3.0, 4.0, 5.0, 1.0, \ 1.0, 1.0, 1.0, 1.0, \ 1.0, 1.0, 1.0, 1.0, \ 1.0, 1.0 )) f_vec = np.array ( (\ 1.000000000000000, \ 0.2500000000000000, \ -0.3750000000000000, \ -0.4843750000000000, \ -0.1328125000000000, \ 0.2753906250000000, \ -0.1640625000000000, \ -1.174804687500000, \ -2.361328125000000, \ -2.616210937500000, \ 0.1171875000000000, \ 0.4218750000000000, \ 0.5048828125000000, \ 0.5097656250000000, \ 0.4306640625000000, \ -6.000000000000000, \ 0.03862000000000000, \ 0.8118400000000000, \ 0.03666000000000000, \ -0.4851200000000000, \ -0.3125000000000000, \ 0.1891200000000000, \ 0.4023400000000000, \ 0.01216000000000000, \ -0.4396200000000000, \ 1.000000000000000 )) n_vec = np.array ( (\ 0, 1, 2, 3, \ 4, 5, 5, 5, \ 5, 5, 5, 5, \ 5, 5, 5, 5, \ 5, 5, 5, 5, \ 5, 5, 5, 5, \ 5, 5 )) x_vec = np.array ( (\ 0.5, \ 0.5, \ 0.5, \ 0.5, \ 0.5, \ 0.5, \ 0.5, \ 0.5, \ 0.5, \ 0.5, \ 0.5, \ 0.5, \ 0.5, \ 0.5, \ 0.5, \ -1.0, \ -0.8, \ -0.6, \ -0.4, \ -0.2, \ 0.0, \ 0.2, \ 0.4, \ 0.6, \ 0.8, \ 1.0 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 a = 0.0 b = 0.0 x = 0.0 f = 0.0 else: n = n_vec[n_data] a = a_vec[n_data] b = b_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, n, a, b, x, f def jacobi_poly_values_test ( ): #*****************************************************************************80 # ## JACOBI_POLY_VALUES_TEST demonstrates the use of JACOBI_POLY_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 February 2015 # # Author: # # John Burkardt # print '' print 'JACOBI_POLY_VALUES_TEST:' print ' JACOBI_POLY_VALUES stores values of the Jacobi polynomials.' print '' print ' N A B X F' print '' n_data = 0 while ( True ): n_data, n, a, b, x, f = jacobi_poly_values ( n_data ) if ( n_data == 0 ): break print ' %6d %12f %12f %12f %24.16g' % ( n, a, b, x, f ) print '' print 'JACOBI_POLY_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) jacobi_poly_values_test ( ) timestamp ( )