#!/usr/bin/env python # def laguerre_associated_values ( n_data ): #*****************************************************************************80 # ## LAGUERRE_ASSOCIATED_VALUES returns some values of the associated Laguerre polynomials. # # Discussion: # # In Mathematica, the function can be evaluated by: # # LaguerreL[n,m,x] # # The associated Laguerre polynomials may be generalized so that the # parameter M is allowed to take on arbitrary noninteger values. # The resulting function is known as the generalized Laguerre function. # # The polynomials satisfy the differential equation: # # X * Y'' + (M+1-X) * Y' + (N-M) * Y = 0 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # # Reference: # # Stephen Wolfram, # The Mathematica Book, # Fourth Edition, # Wolfram Media / Cambridge University Press, 1999. # # Parameters: # # Input/output, integer N_DATA. The user sets N_DATA to 0 before the # first call. On each call, the routine increments N_DATA by 1, and # returns the corresponding data; when there is no more data, the # output value of N_DATA will be 0 again. # # Output, integer N, the order of the function. # # Output, integer M, the parameter. # # Output, real X, the point where the function is evaluated. # # Output, real F, the value of the function. # import numpy as np n_max = 20 f_vec = np.array ( ( \ 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.1000000000000000E+01, \ 0.1500000000000000E+01, \ 0.1625000000000000E+01, \ 0.1479166666666667E+01, \ 0.1148437500000000E+01, \ 0.4586666666666667E+00, \ 0.2878666666666667E+01, \ 0.8098666666666667E+01, \ 0.1711866666666667E+02, \ 0.1045328776041667E+02, \ 0.1329019368489583E+02, \ 0.5622453647189670E+02, \ 0.7484729341779436E+02, \ 0.3238912982762806E+03, \ 0.4426100000097533E+03, \ 0.1936876572288250E+04 )) m_vec = np.array ( ( \ 0, 0, 0, 0, \ 0, 1, 1, 1, \ 1, 0, 1, 2, \ 3, 2, 2, 3, \ 3, 4, 4, 5 )) n_vec = np.array ( ( \ 1, 2, 3, 4, \ 5, 1, 2, 3, \ 4, 3, 3, 3, \ 3, 4, 5, 6, \ 7, 8, 9, 10 )) x_vec = np.array ( ( \ 0.00E+00, \ 0.00E+00, \ 0.00E+00, \ 0.00E+00, \ 0.00E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.50E+00, \ 0.20E+00, \ 0.20E+00, \ 0.20E+00, \ 0.20E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00, \ 0.25E+00 )) if ( n_data < 0 ): n_data = 0 if ( n_max <= n_data ): n_data = 0 n = 0 m = 0 x = 0.0 f = 0.0 else: n = n_vec[n_data] m = m_vec[n_data] x = x_vec[n_data] f = f_vec[n_data] n_data = n_data + 1 return n_data, n, m, x, f def laguerre_associated_values_test ( ): #*****************************************************************************80 # ## LAGUERRE_ASSOCIATED_VALUES_TEST demonstrates the use of LAGUERRE_ASSOCIATED_VALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # print '' print 'LAGUERRE_ASSOCIATED_VALUES_TEST:' print ' LAGUERRE_ASSOCIATED_VALUES stores values of the associated Laguerre function.' print '' print ' N M X F' print '' n_data = 0 while ( True ): n_data, n, m, x, f = laguerre_associated_values ( n_data ) if ( n_data == 0 ): break print ' %6d %6d %12f %24.16g' % ( n, m, x, f ) print '' print 'LAGUERRE_ASSOCIATED_VALUES_TEST:' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) laguerre_associated_values_test ( ) timestamp ( )